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ABSTRACT: We construct potential energy curves for six rare-gas dimers and
several 1-D cuts through two H2

. . . rare-gas potential energy surfaces using two
methods. The first is based on supermolecule dimer calculations at a low level of
theory, extrapolated using monomer calculations at higher levels of theory. The second
is based on perturbation theory calculations, where the effects of intramolecular electron
correlation on different interaction terms are treated using approximate scaling
relationships. Both methods are competitive with supermolecule dimer calculations at
higher levels of theory and provide computationally efficient means of studying weakly
bound systems. The methods are therefore suitable for calculations on larger systems
for which accurate supermolecule methods would be computationally expensive.
© 2003 Wiley Periodicals, Inc. Int J Quantum Chem 96: 537–546, 2004
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1. Introduction

T he class of chemical systems bound by weak
van der Waals forces or hydrogen bonds pro-

vides particular challenges to theoretical chemists.

Wide areas of research involving noncovalent inter-
actions depend on a description of the potential
energy surface, whether this be aiding the interpre-
tation of high-resolution spectroscopic data or
modeling the binding of ligands to proteins. What-
ever the application, the accuracy of the potential
energy surface used in any calculation is a factor
that must be considered when interpreting results,
and there is no doubt that only for a small number
of systems are accurate intermolecular potentials
available.
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The target of “chemical accuracy,” often quoted
as 1 kcal/mol, may be a significant fraction of the
binding energy for hydrogen-bonded systems such
as the water dimer, or indeed many times the bind-
ing energy for van der Waals systems bound pri-
marily by dispersion forces. On the other hand,
“spectroscopic accuracy” (i.e., 1 cm�1) is much
more appropriate for weakly bound systems, 1
cm�1 being about 1% of the argon dimer binding
energy, but still representing over 10% of the he-
lium dimer interaction. Accuracy of 1% in the bind-
ing energy of a van der Waal complex is still not, in
general, an easy target to achieve, principally due to
present computational limitations. Post-Hartree–
Fock supermolecule methods using large basis sets
lead to calculations that scale unfavorably with sys-
tem size, and the number of systems for which
essentially exact solutions of the nonrelativistic
Schrödinger equation (within the Born–Oppenhei-
mer approximation) can be obtained is limited to
those with a small number of electronic degrees of
freedom.

In this article we test two methods for obtaining
potential energy surfaces for weakly bound sys-
tems at reduced computational cost relative to su-
permolecule dimer calculations at high levels of
theory. The principal means of achieving this is by
partitioning interaction energies into physically
meaningful pieces and avoiding the explicit calcu-
lation of contributions that we can model in more
computationally efficient ways. We test our meth-
ods on the three homonuclear and three hetero-
nuclear rare-gas dimers containing helium, neon,
and argon, and also show preliminary results for
the H2

. . . Ne and H2
. . . Ar systems. The rare-gas

dimer potential energy curves have been exten-
sively researched over the last 30 years (see, e.g., the
extensive review of Aziz [1], documenting the com-
mon methodologies used), and accurate semiem-
pirical Hartree–Fock plus dispersion (HFD) poten-
tials are available. Extensive ab initio studies of
both homo- and heteronuclear systems have also
recently been carried out [2]. Several theoretical and
spectroscopic determinations of the H2

. . . Ne and
H2

. . . Ar potential energy surfaces have also been
made.

2. Methods

We now describe the two methods we use to
calculate interatomic and intermolecular potential
energy curves. The first, the Systematic InterMo-

lecular Potential Extrapolation Routine (SIMPER),
was first described in a previous article [3], where a
procedure to estimate high-level dimer energies us-
ing low-level dimer energies and high-level mono-
mer properties was outlined. Refinement of the
SIMPER method is described in Section 2.1. The
second method, scaled perturbation theory (SPT), is
based on calculation of low-order terms arising
from the interaction Hamiltonian; this is described
in Section 2.2.

Both approaches use an extension to the overlap
model (see, e.g., Ref. [4]) that we developed [5] to
estimate the effects of electron correlation on ex-
change contributions. We showed that first-order
exchange energies at the MP2 level could be ap-
proximated using first-order self-consistent field
(SCF) exchange energies and SCF and MP2 charge-
density overlap integrals:

Eexch
MP2 � Eexch

SCF �
S�

MP2

S�
SCF . (1)

Because the ratio of the exchange energy and the
charge density overlap integral is not strongly de-
pendent on the level of theory, Eq. (1) can be gen-
eralized to apply to any two levels of theory,

Eexch
level 2 � Eexch

level 1 �
S�

level 2

S�
level 1 , (2)

and we have shown this to be accurate for the
helium dimer with full configuration interaction
(FCI) as “level 2” and SCF as “level 1” [6]. The
levels of theory at which we calculate charge den-
sity overlap integrals in this work are SCF, second-
order Møller–Plesset perturbation theory (MP2),
and quadratic configuration interaction with single
and double substitutions (QCISD). The atomic and
molecular charge densities are calculated using
Molpro [7], and first-order Coulomb energies are
also calculated directly from these.

We also calculate, again using Molpro, ab initio
interaction energies at the MP2 and coupled-cluster
with single, double, and perturbative triple substi-
tutions [CCSD(T)] levels of theory. The neon 1s and
argon 1s, 2s, and 2p core orbitals are frozen, and we
use the full counterpoise procedure of Boys and
Bernardi [8] in all cases. The aug-cc-pV5Z basis sets
of Dunning and coworkers [9, 10], and modified
versions of these are used, where the latter have the
exponents of the polarization functions shifted us-
ing a simple scheme, principally to improve the
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dispersion interaction [6, 11]. Henceforth, we refer
to the standard and “shifted polarization” 5-� basis
sets as AV5Z and SP-AV5Z.

2.1. SIMPER METHOD

The intermolecular potential energy extrapola-
tion method can be described as follows. We divide
the MP2 interaction energy into exchange, first-
order Coulomb, second-order dispersion, and all
other Coulomb contributions:

�Eint�MP2� � Eexch � ECoul
�1� � Edisp

�20� � ECoul
rest . (3)

The first-order Coulomb interaction energy is cal-
culated from the unperturbed ground-state charge
densities. We replace the first-order Coulomb en-
ergy at the MP2 level by the first-order QCISD
Coulomb energy. For rare-gas dimers, the induc-
tion component of the interaction energy is rela-
tively small, has no long-range multipolar compo-
nent, and we do not extrapolate it; this is combined
with higher-order terms in ECoul

rest .
The dispersion and exchange energies are much

more important and require extrapolation to a
higher level of theory for accurate work. We calcu-
late dispersion energy coefficients, CN

MP2, corre-
sponding to the asymptotic behavior of Edisp

(20) at long
range, and represent the dispersion energy by a
damped multipolar series:

Edisp
�20� � ��

N

CN
MP2 � fN�bMP2R� � R�N, (4)

where the fN(bR) are Tang–Toennies damping func-
tions [12] (i.e., incomplete gamma functions of or-
der N � 1), and the scaling parameter bMP2 is ob-
tained at each point on the potential energy surface
because all the other quantities are known.

The MP2 damping functions can be improved by
assuming that the scale parameters, b, are propor-
tional to (C6/C8)1/2 [13] such that

bCISD � �C8
CISD

C6
CISD � bMP2 � �C8

MP2

C6
MP2. (5)

The extrapolated dispersion energy is obtained by
substituting more accurate TD-CISD dispersion en-
ergy coefficients (calculated separately) and scaling
parameters [obtained from Eq. (5) at each point on
the potential energy surface] for the MP2 values in

Eq. (4). Importantly, no fitting is involved in the
extrapolation procedure for the dispersion energy.

Extrapolation of the dominant short-range com-
ponent of the interaction, the exchange energy, is
done using Eq. (2). Note that in the original formu-
lation of this method only the first-order exchange
was treated, but we do not partition the exchange
into first- and higher-order contributions using
SIMPER so all orders of exchange are scaled using
the ratio of QCISD and MP2 charge density overlap
integrals. Again, no fitting procedure is required.

The extrapolated (SIMPER) interaction energy is
hence the sum of the extrapolated exchange energy,
the directly calculated first-order QCISD Coulomb
energy, the extrapolated second-order dispersion
energy, plus the unscaled MP2 induction energy
and miscellaneous higher-order terms. This im-
proves on the description of the dispersion energy
presented in the original SIMPER work [3], which
was believed to be the main deficiency in the
method.

2.2. SPT METHOD

The SPT method is more established than the
newer SIMPER approach, and we have developed a
number of SPT intermolecular potentials (NH3

. . .
He [14], H2O . . . He [15], H2O . . . Ne/Ar [11], and
He . . . He [6]). This method has been refined over
the last few years to approach a consistent and
accurate framework with which all weakly bound
systems can be treated. We describe here the cur-
rent SPT methodology that we apply to all systems
considered in this work.

The first-order exchange, Eexch
(10) , is calculated us-

ing the Heitler–London (HL) method and scaled
according to Eq. (2), using the ratio of QCISD and
SCF charge density overlap integrals. First-order
Coulomb energies are calculated directly using the
QCISD charge densities.

Second-order coupled Hartree–Fock (CHF) in-
duction energies, Eind

CHF, and time-dependent cou-
pled Hartree–Fock (TDCHF) dispersion energies
are calculated using the random-phase approxima-
tion (RPA) spectrum of excited states. The disper-
sion energies are scaled isotropically by C6

DOSD/
C6

RPA, i.e., the ratio of constrained dipole oscillator
strength distribution (DOSD) [16, 17] and our RPA
values of the leading dispersion energy coefficient,
C6. This guarantees the correct long-range (R�6)
behavior for each system. To estimate the effects of
intramolecular electron correlation on the induction
energies, the CHF components are scaled by the
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ratio of induction contributions calculated at the
MP2 and SCF levels of theory, in the SCF field of the
second monomer, i.e., the contribution for fragment
A we use is:

Eind
MP2�A� � Eind

CHF�A� �
Eind

ff,MP2�A�B��

Eind
ff,SCF�A�B��

, (6)

where “ff” indicates a finite-field calculation, in this
case for fragment A in the environment of B (here
signified using the notation A[B]). For systems with
multipolar contributions, an alternative to using Eq.
(6) is to multiply each fragment contribution by the
ratio of the fragment’s MP2 and SCF dipole polar-
izabilities; preliminary work on H2O . . . H2 indi-
cates that this computationally simpler method
yields similar results to the finite-field calculations,
although at a reduced computational cost.

Higher-order exchange terms are included as fol-
lows. The exchange induction contribution is esti-
mated from supermolecule SCF interaction ener-
gies by assuming the following decomposition:

�Eint�SCF� � �EHL � Eind
CHF � Eexch-ind�SCF�, (7)

where we neglect charge transfer and higher-order
induction effects, which are expected to be small in
these nonpolar systems. A similar approach is used
to estimate the exchange dispersion contribution. In
this case, MP2 supermolecule interaction energies
are decomposed according to

�Eint�MP2� � Eexch
�1� � ECoul

�1� � Eind � Edisp
(20)

� Eexch-ind � Eexch-disp, (8)

where the exchange contribution is calculated using
Eq. (2), the first-order Coulomb contribution di-
rectly using the MP2 charge densities, the induction
contribution using the sum of A and B components
from Eq. (6), and the dispersion contribution at the
uncoupled Hartree–Fock (UCHF) level of theory.
The exchange induction used here is that calculated
by Eq. (7) and scaled by the ratio of the MP2 and
SCF overlap integrals. The final SPT interaction
energies are the sum of the first-order exchange and
Coulomb contributions at the QCISD monomer
level of theory, induction and second-order ex-
change at approximately the MP2 level of theory,
and dispersion isotropically scaled to reproduce the
correct long-range behavior.

3. Results

3.1. RARE-GAS DIMERS

3.1.1. Potential Energy Curves

We first compare the potential energy curves for
each of the six systems calculated using the SIMPER
and SPT methods and the ab initio MP2 and
CCSD(T) methods, with the SP-AV5Z basis sets in
each case. The MP2/SP-AV5Z results are pertinent
because this is the highest level of dimer calculation
used by SIMPER and SPT.

Potential energy curves for the six dimers are
shown in Figures 1–6, with the methods above
plotted against the best available reference data for
each system. For the homonuclear systems, these
reference data are quantum Monte Carlo (QMC)
results for He . . . He [18], estimates of FCI results at
the complete basis set (CBS) limit for Ne . . . Ne [19],
and the semiempirical HFDID1 [20] potential of
Aziz for Ar . . . Ar. For He . . . Ne and He . . . Ar, we
use the HFD-B potentials of Keil et al. [21], and the
reported estimated errors in the well depths of 3%
are shown in Figures 4 and 5. Finally, for Ne . . . Ar
we use the HFD-B* potential determined by
Grabow et al. [22]. Values for the binding energies,
De, and equilibrium separations, Re, for the six sys-
tems are collected in Table I.

Not surprisingly, the MP2 results are poor. Typ-
ically, the MP2 dispersion energy coefficients, i.e.,
those at the UCHF monomer level of theory, signif-
icantly underestimate the true values, and this is

FIGURE 1. Potential energy curves for the He . . . He
system calculated using the methods described in the
text. The QMC results are taken from Ref. [18].
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reflected in binding energies that are too small. The
argon dimer is the exception to this general trend;
the UCHF value for C6 is too large by nearly 20%
and consequently the binding energy is overesti-
mated. The CCSD(T) level of theory provides much
more accurate results than MP2, and the binding
energies are always too small for these systems. The
CCSD(T)/SP-AV5Z errors are largest for He . . . He
and Ar . . . Ar (about 5%). Results closer to the CBS
limit have been presented by Cybulski and Toc-
zyłowski [2] using an augmented AV5Z basis set
(AV5Z�). For these more expensive calculations,
the largest errors are reduced to about 3%. The
CCSD(T)/AV5Z� results taken from Ref. [2] are
also given in Table I.

The SIMPER method can be seen to perform
well. For He . . . He and Ne . . . Ne, the SIMPER
results lie below the accurate QMC and FCI/CBS
results by about 0.8 and 1.7 �Eh, respectively. Using
the same basis set, the CCSD(T) binding energies
are too small by about 1.8 �Eh for He . . . He, and 2.7
�Eh for Ne . . . Ne. For Ar . . . Ar, the SIMPER and
CCSD(T) curves are close over a wide range of R,
both methods underestimating the HFDID1 bind-
ing energy by about 20 �Eh. For the heteronuclear
systems, the SIMPER binding energies are larger
than the CCSD(T) values. Comparison with the He
. . . Ne and He . . . Ar is more difficult because of the
significant estimated errors in the HFD-B poten-
tials, but in each case the SIMPER binding energies

FIGURE 2. Potential energy curves for the Ne . . . Ne
system calculated using the methods described in the
text. The FCI/CBS results are taken from Ref. [19].

FIGURE 3. Potential energy curves for the Ar . . . Ar
system calculated using the methods described in the
text. The HFDID1 results are taken from Ref. [20].

FIGURE 4. Potential energy curves for the He . . . Ne
system calculated using the methods described in the
text. The HFD-B results are taken from Ref. [21].

FIGURE 5. Potential energy curves for the He . . . Ar
system calculated using the methods described in the
text. The HFD-B results are taken from Ref. [21].
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are close to the upper limits. However, for Ne . . .
Ar the SIMPER curve is in good agreement with the
HFD-B* results, with the SIMPER binding energy
smaller by less than 0.5%.

The improvement in the SIMPER results pre-
sented here is a consequence of the better descrip-
tion of the dispersion energy; ab initio dispersion

energy coefficients are used, in conjunction with
improved damping functions, as described in Sec-
tion 2.1. For Ar . . . Ar the previous results [3] were
particularly poor because each CN was simply
scaled by the C6

DOSD/C6
MP2 ratio, which is 64.30/

76.49 � 0.84 for the SP-AV5Z basis set. The MP2
overestimate of C6 does not apply to the C8 coeffi-
cient, and the isotropic scaling leads to a scaled
value of C8 	 1281. The more accurate CISD values
calculated here are C6 	 66.37 and C8 	 1636. For
systems where the ratio of the C8 to C6 values is
poor, the damping function scale parameter, bMP2,
is also expected to be poor, and these are modified
in this work according to Eq. (5). For this improved
model, we estimate that the contribution to the
dispersion energy from the C8 term at the minimum
is about 25%; C10 and C12 contribute about 13 and
6%, respectively. For accurate work, the higher dis-
persion energy coefficients are required, and they
contribute around 5% to the dispersion energy for
this example. Results based on the scaled RPA val-
ues of CN and the scaling parameters, bRPA, are
similar.

In contrast to SIMPER, the SPT method system-
atically overestimates the binding energies. For He

FIGURE 6. Potential energy curves for the Ne . . . Ar
system calculated using the methods described in the
text. The HFD-B* results are taken from Ref. [22].

TABLE I ______________________________________________________________________________________________
Binding energies, De (�Eh), and equilibrium separations, Re (Bohr), determined for the potential energy curves
calculated in this work [MP2, CCSD(T), SIMPER, and SPT] and reference values from the literature.

Property MP2

CCSD(T)

SIMPER SPT Literature value Ref.SP-AV5Z AV5Z�

He . . . He
De 21.80 32.96 33.67 35.60 35.23 34.77 
 0.06 [18]
Re 5.81 5.64 5.62 5.59 5.59 5.60

Ne . . . Ne
De 84.07 128.79 130.33 133.13 139.90 131.53 
 1.1 [19]
Re 6.08 5.87 5.86 5.82 5.79 5.86

Ar . . . Ar
De 495.45 431.61 441.90 430.13 462.24 453.60 [20]
Re 7.09 7.16 7.14 7.17 7.09 7.10

He . . . Ne
De 42.55 65.68 66.57 67.84 69.88 66.15 
 2 [21]
Re 5.94 5.74 5.72 5.71 5.68 5.74

He . . . Ar
De 76.51 91.99 94.15 97.15 99.43 93.89 
 3 [21]
Re 6.72 6.62 6.60 6.60 6.55 6.57

Ne . . . Ar
De 171.57 203.24 205.87 207.76 220.44 208.62 [22]
Re 6.71 6.62 6.60 6.60 6.54 6.58

The CCSD(T)/AV5Z� results are taken from Ref. [2].
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. . . He, Ne . . . Ne, and Ar . . . Ar, the SPT binding
energies are in error by about 1.3, 6.4, and 1.9%,
respectively. The corresponding CCSD(T) errors
are �5.2, �2.0, and �4.8%, so the performance of
SPT for He . . . He and Ar . . . Ar is better than the
CCSD(T) calculations with the same basis sets and
worse for Ne . . . Ne. For He . . . Ne and He . . . Ar,
we again have to consider the accuracy of the
semiempirical HFD-B well depths; in support of
this concern is the fact that the CCSD(T)/AV5Z�
calculations have larger binding energies than the
HFD-B values [2]. This is in contrast to the homo-
nuclear systems and Ne . . . Ar. Note that the
HFD-B potentials for He . . . Ne and He . . . Ar are
fitted using experimental differential cross-section
and diffusion coefficient data [21], whereas the
HFD-B* potential for Ne . . . Ar is fitted using mi-
crowave transitions measured for several isoto-
pomers. The well depth for the HFD-B* potential is
therefore likely to be more accurate than those for
the two HFD-B models, and the SPT binding energy
for Ne . . . Ar is larger than the HFD-B* value by
about 5.7%.

One aspect of previous work using SPT poten-
tials is adjustment to reproduce a single or small
number of accurate interaction energies. For Ne . . .
Ne, the SPT interaction energy at R 	 5.84 Bohr is
too negative by about 6 �Eh. The induction and
second-order exchange contributions here are small
and not likely to account for a large fraction of this
error. The dispersion energy contributes a large
amount to the interaction energy (about �263 �Eh),
but the model is expected to be accurate; we use
values of C6 	 6.383 (the DOSD value) and C8 	
84.91, which compare well with the CISD values of
C6 	 6.235 and C8 	 84.68. The SPT and CISD C8/C6
ratios are 13.3 and 13.6, respectively, so in addition
to the CN the SPT damping functions are also ex-
pected to be accurate [see Eq. (5)]. Note that substi-
tuting the CISD values of C8 and the higher CN for
the scaled RPA values has a negligible effect on the
SPT interaction energy. Also to consider are basis
set incompleteness, the accuracy of the overlap
model that we are using [Eq. (2)], and the quality of
the monomer charge densities. We are unable to
test at present the effect of missing electron corre-
lation effects in the charge densities, but we note
that for the helium dimer, for which all monomer
correlation effects are accounted for, we estimated
that Eq. (2) is accurate to about 1% [6]. We can
reproduce the Gdanitz FCI/CBS estimate of the
interaction energy at R 	 5.84 Bohr by scaling the
first-order exchange energies by 1.0489, and the

results for this curve, denoted SPT-fit, are shown
alongside the FCI/CBS data in Figure 7. Despite the
fact that only the FCI/CBS energy at the minimum
is used, the SPT-fit curve is in excellent agreement
with the high-quality data both in the repulsive
wall and the minimum-energy region, suggesting
that this approach has a physically reasonable basis.

3.1.2. Rovibrational Energy Levels

To test the reliability of the calculated potential
energy curves, we calculate the energy differences
associated with rovibrational transitions. First, we
fit the calculated MP2, SIMPER, and SPT energies to
the following functional form:

V�R� � A � exp��bR� �
c

�R � u�6 �
d

�R � u�8 , (9)

where A, b, c, d, and u are parameters of the fit. To
account for the rotational contribution to the en-
ergy, we add to V(R) the centrifugal potential

Vrot�R� � �2J� J � 1�/�2�R2�, (10)

where � is the reduced mass, and solve the 1-D
Schrödinger equation numerically using the fourier
grid Hamiltonian (FGH) method to obtain rovibra-
tional wave functions and energies [23].

The frequencies of the vibrational transitions for
Ne . . . Ar obtained for the SIMPER and SPT curves
and those using the HFD-B [24] and HFD-B* poten-
tials [22] are given in Table II. The HFD-B and
HFD-B* results have been calculated by us, using

FIGURE 7. Potential energy curves for the Ne . . . Ne
system calculated using the methods described in the
text. The FCI/CBS results are taken from Ref. [19].
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the FGH method, for consistency with the other
results. We also include the results based on the
low-level MP2 potentials and the CCSD(T)/
AV5Z� data of Cybulski and Toczyłowski, taken
from Ref. [2]. It is evident from Table II that our
values of the energy differences between vibra-
tional levels obtained for the extrapolated SIMPER
and SPT curves are consistently in good agreement
with the best calculated literature CCSD(T) data
and also with the results based on the semiempiri-
cal HFD-B and HFD-B* potentials. On the other
hand, the MP2 results are poor, reflecting the defi-
ciencies in the potential energy curves.

In Table III, we present the energy differences
between rotational levels of the ground vibrational
state for all three heteronuclear dimers. For Ne . . .
Ar we compare the results obtained with the ex-
tremely accurate microwave frequency measure-
ments of Grabow et al. [22] for the first three tran-
sitions. For the fourth transition, we cite the energy
difference calculated by Cybulski and Toczyłowski

[2] using the values of B0, DJ, and HJ given by
Grabow et al. [22]. For the systems containing He,
our results are compared with those calculated by
Ogilvie and Wang [25] using a Dunham-type ex-
pansion of the potentials. Overall, our results are in
good agreement with the literature values. For Ne
. . . Ar, the SIMPER results underestimate the actual
frequencies of rotational transitions but remain
within 0.7% of the experimental values. For He . . .
Ne and He . . . Ar, SIMPER overestimates the
semiempirical data of Ogilvie and Wang. The SPT
method overestimates the frequencies in all cases.

3.2. H2
. . . Ne AND H2

. . . Ar COMPLEXES

The H2
. . . Ne and H2

. . . Ar potential energy
surfaces can be represented by an expansion in
Legendre polynomials:

V�R, r, � � � �
	

V	�R, r� P	�cos � �, (11)

TABLE II ______________________________________________________________________________________________
Energy differences (cm�1) between vibrational levels for Ne . . . Ar.


� � 
� MP2 CCSD(T) SIMPER SPT HFD-B HFD-B*

1 � 0 15.89 18.45 18.56 19.49 19.09 18.78
2 � 1 7.98 9.89 10.22 10.89 10.60 10.19
3 � 2 2.35 3.60 3.70 4.14 3.86 3.54

The MP2, SIMPER, and SPT data are obtained using the SP-AV5Z basis set. The CCSD(T) results, using the AV5Z� basis set, are
taken from Ref. [2].

TABLE III _____________________________________________________________________________________________
Energy differences (cm�1) between rotational levels of the ground vibrational state of an indicated dimer.

j� � j� MP2 CCSD(T) SIMPER SPT Literature value Ref.

He . . . Ne
1 � 0 0.5267 0.7092 0.7179 0.7302 0.7060 [25]
2 � 1 1.3387 1.3592 1.3877 1.3480 [25]

He . . . Ar
1 � 0 0.5489 0.5895 0.5941 0.6031 0.5897 [25]
2 � 1 1.0822 1.1671 1.1770 1.1950 1.1670 [25]
3 � 2 1.5789 1.7180 1.7347 1.7622 1.7170 [25]

Ne . . . Ar
1 � 0 0.1855 0.1929 0.1931 0.1971 0.1944 [22]
2 � 1 0.3705 0.3856 0.3863 0.3940 0.3887 [22]
3 � 2 0.5553 0.5780 0.5788 0.5906 0.5826 [22]
4 � 3 0.7392 0.7698 0.7706 0.7866 0.7759 [22]

The MP2, SIMPER, and SPT data are obtained using the SP-AV5Z basis set. The CCSD(T) results using the AV5Z� basis set are
taken from Ref. [2].
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where R is the distance between the H2 center of
mass and the rare-gas atom, r the H2 bond length,
and � the angle between the H2 axis and the line
connecting the H2 center of mass and the rare gas
atom. Truncating Eq. (11) at 	 	 2, we need only
consider the parallel (linear) and perpendicular (T-
shaped) cuts through the potential energy surface
because

V� � V0 � V2,

V� � V0 � V2/ 2, (12)

and hence

V0 � �V� � 2V��/3

V2 � 2�V� � V��/3. (13)

For convenience, we drop the dependence on R and
r from the notation; in this work we do not consider
the dependence of the potential energy surfaces on
r, and only consider r 	 1.449 Bohr (the vibra-
tionally averaged value of r in the ground state).
We calculate linear and T-shaped cuts through the
H2

. . . Ne and H2
. . . Ar surfaces using the MP2,

CCSD(T), SIMPER (for H2
. . . Ne only), and SPT

methods. The MP2 and CCSD(T) calculations are
performed using AV6Z basis sets.

Results using the above methods are shown for
H2

. . . Ne in Figure 8, along with the HFD-B results
of Rodwell and Scoles [26] (models B and C for the
V0 and V2 dispersion terms, respectively). The MP2

results are significantly shallower than the CCSD(T)
results for both orientations, and the SIMPER and
CCSD(T) results are in excellent agreement. The
SPT method probably overestimates the binding
energies, as for the other systems discussed here, so
SIMPER and SPT can reasonably be expected to
provide lower and upper bounds to the binding
energies: 112–121 �Eh for the linear configuration
and 98–112 �Eh for the T-shaped configuration.

For H2
. . . Ar, a number of potentials have been

developed but the most accurate is probably the
recent XC (fit) potential of Bissonnette et al. [27].
This is based on ab initio calculations, with both
short- and long-range parameters adjusted to re-
produce spectroscopic and thermodynamic data.
The SIMPER method cannot be used for this system
because the partitioning of the MP2 interaction en-
ergy into Coulomb and exchange contributions [Eq.
(3)] is unstable at values of R close to the potential
energy minimum. The MP2, CCSD(T), SPT, and XC
(fit) results are shown in Figure 9. Interestingly, for
the linear configuration the MP2 and CCSD(T) re-
sults are similar, although for the T-shaped config-
uration the CCSD(T) results are somewhat deeper.
The SPT curves lie below the XC (fit) data, for
which the binding energies should be accurate. We
derive SPT-fit models, where we scale the first-
order exchange energies by 1.0335 and 1.0491 for
the linear and T-shaped geometries, respectively, to
reproduce the XC (fit) interaction energies at 6.7
Bohr. These scaling factors are similar to the one
used for Ne . . . Ne (1.0489) and yield potential
energy curves in good agreement with the XC (fit)
data both in the repulsive wall and the well.

FIGURE 8. Potential energy curves for the H2
. . . Ne

system, in linear and T-shaped configurations, calcu-
lated using the methods described in the text. The
HFD-B results are taken from Ref. [26].

FIGURE 9. Potential energy curves for the H2
. . . Ar

system, in linear and T-shaped configurations, calcu-
lated using the methods described in the text. The XC
(fit) results are taken from Ref. [27].

DETERMINING INTERMOLECULAR PES

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 545



4. Conclusions

We describe two methods, SIMPER and SPT, for
calculating intermolecular potentials for weakly
bound systems based on low-level supermolecule
dimer and perturbation theory calculations. We ap-
ply these methods to homonuclear and hetero-
nuclear rare-gas dimers and the H2

. . . Ne and H2
. . . Ar complexes. Both methods compare favorably
with computationally more expensive dimer calcu-
lations; the CCSD(T) method systematically under-
estimates binding energies for these systems,
whereas SPT systematically overestimates them.
An improved model for the SIMPER dispersion
energy leads to better results than reported previ-
ously, especially for Ar . . . Ar. A simple scaling
procedure yields modified SPT potential energy
curves in excellent agreement with existing data for
Ne . . . Ne and H2

. . . Ar. The partitioning of the
MP2 supermolecule energy into exchange and Cou-
lomb components is found to be unstable for H2

. . .
Ar, and work is underway to resolve this problem.
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