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Abstract
We perform calculations using the semiclassical Fourier approach for
quasimolecular spectra induced by thermal collisions of the excited calcium
atom (Ca∗) with the helium atom in the ground state (He) for the following
quasimolecular optical transitions: (� = 0+, 4s4p 1P) ↔ (� = 0+, 4s2 1S0)

and (� = 0+, 4s3d 1D) ↔ (� = 0+, 4s2 1S0) in the Ca–He quasimolecule. As
a comparison with the experimental results obtained under gas-cell conditions,
we average the spectra under study over the impact parameters and the
Maxwellian distribution of the colliding particles. For the asymptotically
forbidden Ca(4s2 1S0 → 4s3d 1D2)–He quasimolecular transition, the first
comparison between the calculated spectral line profile and the experimental
one is made not only in shape, but also in absolute value. We clarify the
physical mechanisms for the initiation of a spectral line satellite at the position
of the forbidden atomic transition being investigated. The reasonable agreement
confirms that the spectral lineshapes of the asymptotically forbidden transitions
are formed due to the interplay between the structure of the potential energy
curves involved and the strong dependence of the radiative width.

1. Introduction

The emission (and absorption) spectral lineshape for allowed transitions in atoms in a buffer-
gas atmosphere is well understood both experimentally and theoretically. It contains a
central Lorentzian part and quasistatic wings having some possible structure which can be
assigned to the extrema in the difference potential curve. A similar general description for the
spectral lineshape of the forbidden atomic transitions in a buffer-gas atmosphere is lacking.
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Such forbidden transitions are weak and difficult to measure experimentally. In this case
corresponding spectral lines are formed by quasimolecular transitions only and have a wide
variety of shapes, as the reasons for lifting a transition ban are varied. In contrast to the allowed
transitions, the known analytical approaches, e.g. the quasistatic approximation or the unified
Franck–Condon (UFC) theory [1], fail to describe the spectral lineshapes of asymptotically
(at the limit of separated atoms) forbidden transitions [2]. The reason for this is that a strong
dependence of quasimolecular radiative width on interatomic distance R is inherent in the
forbidden transitions. As a result, there are few data on spectral lineshapes of asymptotically
forbidden transitions and there are conflicting interpretations of the observed effects.

In that sense, the situation around the collisionally induced absorption line corresponding
to the electric-quadrupole transition 4s2 1S0–4s3d 1D2 in calcium in a helium atmosphere is
rather typical. The shape of such a transition spectral line is sensitive to the details of the
quasimolecular potential energy curves (PEC) involved and to the radiation widths. The early
experimental data obtained by the traditional photoabsorption hook method in absolute values
for the spectral line of the forbidden transition in a rare-gas atmosphere were presented in [3].
The observed absorption spectrum shows a satellite with a maximum at ω = 22 012 cm−1,
shifted in the ‘blue region’ of the spectrum (�ω = 162 cm−1) from the position of the
corresponding atomic line ωat = 21 850 cm−1. In [3] the satellite was associated only with the
interaction of the 4s4p 1P1 and 4s3d 1D2 states at small interatomic distances. In more recent
papers [4, 5] this transition for a variety of rare-gas perturber species was investigated by a
laser probe fluorescence technique. Although the absorption spectral lineshape was not given
in [4,5] directly for the case of helium, the data presented in [5, figure 3] provide an estimate of
�ω = 180 cm−1. The relative values obtained in experimental results were explained by the
quasimolecular character of the absorption in the vicinity of a forbidden atomic transition. The
results were interpreted in [5] in terms of molecular potentials and the satellite was concerned
with the extremum in the corresponding difference potential curve.

Note that in the potential curve calculations, which existed at the time paper [5] was
published, no data of the extremum occurrence were present. The first confirmatory evidence
for the extremum in the difference potential curve was obtained in [6], where the satellite
near the forbidden atomic transition was also assigned to this extremum. According to [6]
the difference in energy values between the 1D adiabatic term and the 1S0 ground state (the
difference potential curve ωSD) does have an extremum at Rext = 8.25 au (see figure 1(b)).
It is essential that the state interaction during the collision leads to a rapid change in the
quasimolecular radiative width 	 relative to the interatomic distance R. Some preliminary
estimates and calculations in [7] have shown that the strong dependence	(R) can itself produce
a maximum in the spectral profile.

In this paper we concentrate on clarifying the main mechanisms for the satellite formation
in a spectral line of asymptotically forbidden transitions characterized by the absence of the
corresponding atomic line. For the forbidden Ca(4s2 1S0 → 4s3d 1D2)–He quasimolecular
transition we obtained new experimental data and performed the original calculations within
the framework of the semiclassical Fourier approach. The results were, for the first time,
compared not only in shape, but in absolute magnitude.

We show in this paper that the UFC approach is unreliable for spectral lineshape
calculations in the case of a strong dependence of the quasimolecular width on the interatomic
distance, which is true for asymptotically forbidden transitions. We reveal that the spectral
lineshapes of the asymptotically forbidden transitions are formed due to the interplay between
the structure of the potential energy curves involved and the strong dependence of the radiative
width. For spectrum calculations of such transitions an approach which takes into account both
of these points simultaneously needs to be used. A good agreement between the experimental
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Figure 1. Radiative widths (a) and difference potential curves (b) for the (� = 0+, 4s4p 1P) and
(� = 0+, 4s3d 1D) states of the Ca–He quasimolecule. The dotted curve in figure 1(b) is the
exponential approximation for the (� = 0+, 4s3d 1D) difference potential curve.

and the calculated results shows that the semiclassical Fourier approach is the most adequate.
Below it is shown that this approach fits well for the allowed transition Ca(4s2 1S0 → 4s4p 1P)–
He also.
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2. Experimental

The experimental set-up and procedures were almost the same as those described in our previous
papers [8,9]. A heat-pipe metal-vapour cell (about 40 cm in effective vapour length) was placed
in the test-beam section of a Mach–Zehnder interferometer and operated at temperatures of
1048 and 1163 K. The He perturber gas was added to the cell in the pressure range 100–
700 Torr. The light beam from a Xe short-arc lamp is divided into two: one part passes
through the absorption cell, while the other serves as a reference. These two light beams,
and the interference beam which is the superposition of them, are alternately dispersed by a
50 cm Czerny–Turner spectrometer equipped with a grating of 600 or 1800 grooves/mm and
are detected by a 1024-channel photodiode array. The overall resolution was about 0.1 nm.
From the interference spectrum measured around the Ca resonance line, the number density
of Ca atoms integrated over the line-of-sight, i.e. column density NCala , was determined very
precisely.

Assuming that the absorption in the wings of the resonance line consists of a superposition
of the absorption for the Ca–He pair and that of the Ca–Ca pair, we have

k(�)Ia

(NCala)2
= γCaHe(�)

nHe

NCala
+
γCaCa(�)

la
(1)

where γCaHe(�) and γCaCa(�) are the reduced absorption coefficients at a wavenumber shift
� from the line centre for the Ca–He and the Ca–Ca systems, respectively.

Thus, we can obtain γCaHe as a gradient and γCaCa/la as an intercept via the straight-line fit
of the kla/(NCala)2 versus nAr/NCala plot at each� in the spectral range covered in this study.
The experimental results obtained are shown in figures 2 (curve 2) and 4 (triangles). For the
case of the asymptotically forbidden (� = 0+, 4s3d 1D)–(� = 0+, 4s2 1S0) quasimolecular
transition, the spectral line profile has little in common with that for the allowed transition; the
maximum shift from the atomic line position is�ω = 200 cm−1 centred at ω = 22 050 cm−1

with half-width 260 cm−1.

3. Theory

3.1. Potential energy curves and radiative widths

In a rigorous approach one should first treat the quantum chemistry part of the problem, that
is calculate the PEC and radiative widths (optical transition probabilities) of quasimolecular
states associated with the atomic states involved. The (4s2 1S0–4s3d 1D2) transition is fully
forbidden in the isolated Ca atom. In the process of interaction with the He buffer gas atom
during the collision, three quasimolecular states with � = 0+, 1, 2 projection are produced
from the atomic 1D2 state. The quasimolecular states with � = 0+, 1 are tied up with the
ground � = 0+ state by optical transition. The required PEC of the excited states were
obtained in [6] within the framework of the multi-configuration version of the pseudopotential
method, but [6] contains no data for corresponding radiative widths. The simplest approach
to the quasimolecular spectrum calculations may involve an approximation of the radiative
width by its asymptotic value in the isolated atom. Indeed, this approach can be treated as
a reasonable approximate estimate for the spectrum calculation of asymptotically allowed
transitions, such as 4s2 1S0–4s4p 1P. However, even such a simplistic approach is unsuitable
for asymptotically forbidden transitions, since, in this case, there is a strong dependence of the
radiative width on interatomic distance caused by the interaction between the excited diabatic
states. The closeness of the excited diabatic states allows the application of a simple few-state
or even a two-state, approximation as a reasonable model of the interaction [10].
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Figure 2. The absorption spectrum for the asymptotically forbidden (� = 0+, 4s2 1S0) → (� =
0+, 4s3d 1D) quasimolecular transition. Curve 1 shows the calculations in the semiclassical Fourier
approach averaged over the impact parameters and the energies of colliding particles (the broken
curve is the same, but with substitution of R0 → Rc); curve 2 is the experimental data for the
spectrum.

The two-state approach was used in [7,11] to calculate both the PEC and radiative widths
of the quasimolecular states produced by the 4s4p 1P and 4s3d 1D atomic states of the Ca atom
in collisions with the He atom. Results obtained in this way have demonstrated good agreement
with those for PEC obtained within the framework of the multi-configuration version of the
pseudopotential method.

Let us outline the method briefly for radiation widths starting with the� = 0+ states. We
consider the interaction V (R) between the two nearest interacting diabatic states connected
with the 1P and 1D atomic states of m = 0 projection which is given by the following
expression:

V (R) = V0

2
e−αR. (2)

The parameters V0 = 0.96 and α = 0.676 were chosen from the calculated results on the
non-diagonal part of the interatomic interaction. The corresponding adiabatic wavefunctions
of investigated quasimolecular states are of the form:

�(4 1P) = cos θ(R)ϕ(4 1P) + sin θ(R)ϕ(3 1D)

�(3 1D) = − sin θ(R)ϕ(4 1P) + cos θ(R)ϕ(3 1D)

θ(R) = 1
2 arctan

(
V0

�ε
e−αR

) (3)
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whereϕ(3 1D) andϕ(4 1P) are wavefunctions of the atomic states involved, and�ε is a splitting
between the 1P and 1D excited states. Thus, according to equations (3) the radiative widths
for the quasimolecular transition would be expressed as

	(0+ 1P) = 	(1P) cos2 θ(R)

(
ωSP

ω0

)3

	(0+ 1D) = 	(1P) sin2 θ(R)

(
ωSD

ω0

)3
(4)

taking into consideration their dependence on the transition frequency (figure 1(a)). 	(1P) =
5.3×10−9 au is the radiative width of the 1P atomic state, ω0 is the difference in energy values
between the 1P excited state and the ground state, ωSP (ωSD) is the difference in energy values
between the 1P (1D) adiabatic term and the 1S0 ground state. Figure 1(b) shows the difference
potential curves ωSP, ωSD = �U = U ∗ − U0 obtained by using the excited state potential
curves U ∗ found in the two-level approach and the ground state potential U0 taken from [12].
For a second pair of interacting states ofm = 1 projection, the PEC and radiative widths were
also calculated by the method given above, but in this case the parameters in (2) are V0 = 0.16
and α = 0.832.

3.2. Spectral lineshape calculation

3.2.1. Absorption coefficient. For the absorption coefficient calculation we take what is
known as a Fourier approach, which represents, in fact, a generalization of the traditional
approach accepted in the classical theory of spectral line broadening [13].

In the context of this approach, a transition amplitude b(ω) (in au) is given by

b(ω) = −i
∫ √

	(t)

2π
exp

[
−i

∫
(�U −�ω) dt

]
dt (5)

and can be interpreted as a Fourier transform of a transition dipole moment calculated with time-
dependent quasimolecular wavefunctions. Here, �ω is a frequency shift from the asymptotic
position of a difference term at R → ∞.

It should be mentioned that equation (5) suggests the following law for the conservation
of normalization:∫ ω

ω0

|b(ω)|2 dω = 1 − exp

(
−

∫ t

t0

	(t) dt

)
. (6)

Equation (6) is a convenient additional control over the numerical spectral calculations carried
out, because the values ω0(t0) and ω(t) are finite in specific calculations whereas, according
to the physical meaning of the problem, the integration limits are infinite.

Note that we can neglect the non-adiabatic transitions between the considered states
during the collision; this is because of the non-adiabaticity parameter of the problem
ξ ∗ = π�ε/2αv = 19.6 	 1, and it corresponds to a pure adiabatic case. For more details,
see [7,11]. For the spectrum averaged over the impact parameters ρ and energiesE of colliding
atoms we have 〈|b(ω)|2〉 =

∫ ∞

0
ρ dρ

∫ ∞

0
Ee−E/kT dE |b(ω)|2 (7)

assuming a Maxwellian distribution over the energies E.
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The absorption coefficient γ ab is calculated on the assumption that the radial velocity of
atom movement vR is a constant in the vicinity of a point R0 which is the most significant
region of the spectrum formation. In the theory of spectral line satellites, for instance, the
position of the difference function extremum is often used as R0 [1]. In our case, as in atomic
collision theory, the centre of the non-adiabatic region is naturally taken as the point R0 which
is defined as

R0 = 1

α
ln
V0

�ε
. (8)

Note that R0 = 7.0 au in the case of m = 0 projection and R0 = 3.6 au for m = 1. Next,
the integration in (7) over the impact parameters ρ can be performed analytically by entering
a new variable E∗ = E(1 − ρ2/R2

0 − U ∗(R0)/E) and integrating by parts [14]. Then the
absorption coefficient γ ab is conveniently expressed by the product of two factors:

γ ab(ω, T ) = N(R0, T )S(ω, T ) (9)

N(R0, T ) = g(�∗)
g(�)

p(�)πv̄R2
0 exp

(
−U

∗(R0)

kT

)
(10)

S(ω, T ) = λ2

4
exp

(
�ω

kT

)
〈|b(ω)|2〉 (11)

where 〈|b(ω)|2〉 after analytical simplification will take the form

〈|b(ω)|2〉 =
∫ ∞

0
e−x

∣∣∣∣∣b
(
ω, vR =

√
2kT x

µ

)∣∣∣∣∣
2

dx. (12)

Here, v̄ = √
8kT /πµ;p(�) = g(�)/g(J ) is the probability of the formation of

quasimolecules with projection� in the ground state; g(�∗) (or g(�)) is a statistical coefficient
of the quasimolecular state with projection �∗ (or �).

The first factor (10) depends upon only the parameter R0, apart from the temperature
T , and defines the spectrum intensity. The S(ω, T ) factor (11) is frequency dependent and
completely determines the shape of the spectral line. It is obvious that the factorization of
the absorption coefficient by this means is very convenient for the purpose of comparison
with the experimental data, because the factor S(ω, T ) (11) represents the spectral profile
in relative units, which is often given by measurements. Thus, to find a spectral lineshape,
the averaged integral (12) needs to be calculated with the corresponding statistical factor (see
(9)–(11)).

3.2.2. Forbidden transition. Once again, we start by considering the case of the � = 0+

quasimolecular state. Namely, curve 1 in figure 2 (and also curve 1 in figure 3) shows the results
of the absorption spectrum (absorption coefficient γ ab) calculation for the asymptotically
forbidden (� = 0+, 4s3d 1D)–(� = 0+, 4s2 1S0) quasimolecular transition. The spectrum was
obtained using equations (9)–(12) and the results are in good agreement with the experimental
data (curve 2 in figure 2) not only in shape, but also in absolute magnitude, which is an
important point to note. It should be particularly emphasized that no fitting parameters were
used in the calculation.

What are the physical reasons for the formation of a satellite of this shape? There are
two. The first and main reason is the state interaction which leads to a rapid change of the
quasimolecular radiative width. To demonstrate the influence of the changing radiative width
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Figure 3. The absorption spectrum for the asymptotically forbidden (� = 0+, 4s2 1S0) → (� =
0+, 4s3d 1D) quasimolecular transition. Curve 1 shows the calculations in the semiclassical Fourier
approach averaged over the impact parameters and the energies of colliding particles (the broken
curve is the same, but with substitution of R0 → Rc); curve 2 is the spectrum calculations in the
Fourier approach with the use of an exponential approximation for the difference potential curve
(dotted curve in figure 1(b)); curve 3 demonstrates the spectrum calculations by the UFC formula
given in [1].

on satellite formation, the results of the calculation in the Fourier approach with the use of the
monotonic exponential function as a difference potential (dotted curve in figure 1(b)), are given
by curve 2 in figure 3. The model approximation makes it possible to exclude the extremum
of the difference function from consideration. One can clearly see that this approach describes
the formation of the maximum near the forbidden atomic line, but its shape and position
(�ωm = 340 cm−1 to the blue region of spectrum) differ both from the experiment and from
the previous accurate calculation in the Fourier approach (curve 1 in figures 2 and 3). Another
reason for the satellite formation is the extremum in the difference potential curve. However, if
we restrict ourselves to considering the mere influence of the extremum on spectrum formation,
this approach also yields unsatisfactory results. To provide support for this view curve 3 in
figure 3 demonstrates the spectrum calculation by the UFC formula given in [1] using the
actual difference potential curve (figure 1(b)). The formula should be multiplied by 	(Rc),
where Rc is the position of the Condon point. The comparison reveals that the UFC approach
ignores the rapid changing of the radiative width. This method leads to a closer position of
the spectral line maximum (�ωm = 180 cm−1 to the blue region of spectrum), but its absolute
intensity and form are still inadequate.

Thus, a consequence of the above discussion is that the Fourier approach succeeded in
spectrum calculation, taking into account simultaneously both the occurrence of the extremum
in the difference potential curve and the rapid changing of the radiative width. It is just this
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Figure 4. The absorption spectrum for the asymptotically allowed (� = 0+, 4s2 1S0) → (� =
0+, 4s4p 1P) quasimolecular transition. Stars, calculations in the semiclassical Fourier approach
averaged over the impact parameters and the energies of colliding particles (the full curve is the
same, but with R0 = 15 au); triangles, experimental data for the spectrum; squares, experimental
data of [15].

calculation which is presented by curve 1 in figures 2 and 3. We can refine the description
of the spectrum in the region of real Condon point existence by replacing the fixed parameter
R0 by a current value of the Condon point Rc for every frequency. The corrected part of
the spectral line using equations (9)–(12), but substituting a factor N(Rc, T ) for N(R0, T ) in
equation (10), is shown by the broken curve in figures 2 and 3.

Normalization of integral (6) over the spectrum obtained in the semiclassical Fourier
approach for the case of the forbidden (� = 0+, 4s2 1S0) → (� = 0+, 4s3d 1D)
quasimolecular transition (curve 1 in figures 2 and 3) comes out to∫ ω(t)

ω0(t0)

|b(ω)|2 dω = 5.02 × 10−6 (13)

and the transition probability calculated from equation (6) gives us the following value:

1 − exp

(
−

∫ t

t0

	(t) dt

)
= 5.2 × 10−6. (14)

One can see that the law of normalization conservation (6) is good within the accuracy of
the analysis, the probability of the forbidden transition is of the order of 10−6, so that for such
small values of probability it is seen that the resulting values, (13) and (14), agree closely.

Note that for the case being studied, the contribution of the second allowed quasimolecular
transition (� = 1, 4s3d 1D)–(� = 0+, 4s2 1S0) to the spectrum is insignificant, because the
main part of the spectrum is formed in the blue forbidden region. What is more, the non-
diagonal matrix element of interatomic interaction for the� = 1 pair is six times less than for
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the � = 0 + case and we can neglect the transitions to the � = 1 state for the red wing of the
spectrum as well.

3.2.3. Allowed transition. For the (4s4p 1P)–(4s2 1S0) transition allowed in the atomic
limit, both pairs of interacting quasimolecular states with � = 0+ and � = 1 were treated
simultaneously. However, it is clear from the difference potential curve that the inclusion
of the (� = 1, 4s4p 1P)–(� = 0+, 4s2 1S0) quasimolecular transition is essential for the
red wing of the spectrum only, whereas its contribution to the blue wing is insignificant.
The stars in figure 4 show the overall absorption spectrum obtained by equations (9)–
(12), also considering the (� = 0+, 4s4p 1P)–(� = 0+, 4s2 1S0) and (� = 1, 4s4p 1P)–
(� = 0+, 4s2 1S0) quasimolecular transitions.

We note that the obtained spectrum correlates well with the experimental data (squares
and triangles in figure 4) in shape for both wings of the spectrum, while the calculated intensity
of the spectral line is much lower than that of the experimental one, in particular in the red wing
of the spectrum. The reason for such a difference between the calculated and observed spectral
intensity is that for the red wing calculation we use a fixedR0 parameter in theN(R0, T ) factor
(see equation (10)), because there are no real Condon points Rc in this region. So, if a good fit
of the calculated spectrum intensity to the experimental data is required, R0 � 15 au is used as
a parameter under the N(R0, T ) factor calculation (see the full curve in figure 4). Thus, in the
red wing of the spectrum we supply a reliable calculation for the spectral lineshape, i.e. for the
S(ω, T ) function computation. For the blue wing of the spectrum the agreement between the
calculated results and the experimental results is better, including the spectral line intensity.
This is due to the use of the corrected factor N(Rc[R0 → Rc], T ) in the blue wing calculation
of the allowed transition spectrum, similar to the refinement of the red wing for the forbidden
transition spectrum.

The semiclassical Fourier approach suggested describes a full contour of the spectral
line, including the classically forbidden part of the spectrum, which is beyond the reach of
quasistatic calculations, and a central Lorentzian part as well (we do not include the central
part of the spectrum in figure 4 for reasons of scale). For the case of the asymptotically
allowed (� = 1, 4s4p 1P)–(� = 0+, 4s2 1S0) transition it makes it possible to calculate the
normalization integral (6) over the spectrum obtained in the semiclassical Fourier approach.
The results of the normalization integral calculation for this case are∫ ∞

−∞
|b(ω)|2 dω = 0.994. (15)

It should be stressed that the intensity of the allowed spectral line differs from the forbidden
one by six orders of magnitude. For this case, the spectrum measurements have been carried
out using the same procedure for both of these spectral line types, and the spectrum calculations
have followed a unified approach which spans six orders of the spectral intensity change.

4. Conclusions

In conclusion, let us sum up the basic results obtained. Using a single experimental set-up
we performed absolute measurements of spectral line profiles for both allowed (4s2 1S0) →
(4s4p 1P) and forbidden (4s2 1S0) → (4s3d 1D) transitions. The calculations follow the unified
approach based on the Fourier transformation which allows us to calculate the spectra of both
asymptotically allowed and forbidden quasimolecular optical transitions and to describe all
fundamental peculiarities of quasimolecular emission spectra including the regions of the far
wings, extrema and central part of the spectral line. The spectra obtained in the semiclassical
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Fourier approach are averaged over the impact parameters ρ and energies E of the colliding
atoms. For the case of the forbidden (4s2 1S0) → (4s3d 1D) transition it makes it possible
for the first time to perform a direct comparison between the calculated spectral line and
the experimental one, not only in shape but also in absolute magnitude. A good accord
between theory and experiment lends support to the validity of the Fourier approach for the
description of forbidden and allowed transitions produced by the interaction with an atom of
buffer gas.

As mentioned above, the semiclassical Fourier approximation permits an extension of
the approach accepted in the classical theory of spectral line broadening and correlates well
with the rigorous, but model, treatment of [16, 17]. In particular, [16] shows that the Fourier
approximation corresponds to the impact parameter method in collision theory, where the
atom movement is treated classically, but the electronic transitions are described within the
framework of quantum mechanics. The quantum approach to nuclear movement is usually
essential for colliding particles approaching at low velocity and also for the description of light
particle scattering [18].

Some theoretical research [19, 20] has been devoted to spectral calculations of
quasimolecular optical transitions at the classical trajectories within the framework of the
Fourier approach under discussion. However, the method proposed in these papers for the
numerical calculation of spectra has a number of essential practical disadvantages. Firstly,
for the case of asymptotically allowed quasimolecular transitions, when the fast-oscillating
integral (5) for a transition amplitude b(ω) is calculated, the central Lorentzian part of the
spectral line profile, which is the most cumbersome for the calculations, is expelled by artificial
means in [19,20]. Only the wings of the spectral line adjacent to the central Lorentzian part of
spectrum can be calculated using this approach, but the Lorentzian part of the spectrum contains
the main portion of the spectral intensity. Thus, this approach gives us no means of carrying
out the normalization of the spectra of the allowed quasimolecular optical transitions in the
atomic limit; therefore, the method is unsuitable for the unified spectral line calculations for
both asymptotically forbidden and allowed quasimolecular transitions. The Fourier approach
used in this paper is free from the limitations outlined.
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