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Abstract
Coupled second-order quantal wave equations are considered for a non-crossing
atomic collision. They are reduced to exactly equivalent first-order equations.
The semiclassical approximation transforms these equations into generalized
projectile–target time-dependent interaction impact parameter equations. We
show that in the suggested approach acausal, cybernetic effects are observed
when terms propagate in the acausal (negative to positive time) direction. We
summarize the results obtained and illustrate these effects in the quantal first
Born approximation.

1. Introduction

In the quantum mechanics of atomic collisions, the time-dependent Schrödinger
equation (TDSE) is causal with respect to the time behaviour. This includes the impact-
parameter treatment of ion–atom collisions. This latter treatment assumes that the relative
motion of the nuclei is described a priori by a classical trajectory, for instance, a straight
line or a Coulomb curved line. Nevertheless, the behaviour of the electrons is described by
quantum mechanics.

However, there is a major difference, depending on whether we consider the general causal
TDSE or the impact-parameter treatment. In the fully quantal TDSE describing three particles
(an electron colliding with a one-electron atom, or a proton or other heavy particle colliding with
a similar atom), the time dependence may be removed immediately by a gauge transformation:
factoring out exp(−iEt/h̄) where E is the total energy. This is because we may assume
that, in these three-body collisions, all three two-body interactions are time independent and
may be described using the time-independent (or stationary) Schrödinger equation. Note that
we are excluding time-dependent external fields in these statements. To continue with the
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major difference, consider further the impact-parameter treatment. The classical treatment of
the relative motion of the collidants means that a gauge transformation exp

(− i
h̄

∫ t
0

z P zT
R′ dt ′)

removes the internuclear interaction (here the charge of the bare projectile is zP and of the
target nucleus is zT and the internuclear distance is R, which may be taken as

√
ρ2 + v2t2 in

the straight-line case, with impact parameter ρ, time t and impact velocity v). However, the
price one pays is that the TDSE must be used since the two other two-body interactions are
time dependent. Nevertheless, a major advantage is that the variational principle (second-
order-in-space, first-order-in-time Jacobi–Euler–Lagrange–Sil) leads to coupled first-order
ordinary differential equations in the impact-parameter treatment (Sil 1960). In contrast,
in the time-independent Schrödinger equation quantal wave treatment the variational principle
(second-order-in-space Jacobi–Euler–Lagrange–Kohn) leads to coupled second-order ordinary
differential equations, by separating the variables and following a partial-wave analysis (Mott
and Massey 1965).

Equally well, it is known that these wave and impact-parameter treatments of an ion–
atom collision are effectively equivalent in the first-Born perturbation approximation, under
rather minimal assumptions, notably a large reduced mass of the projectile and the nuclear
target (Crothers and Holt 1966). Thus it should come as no surprise that the so-called time-
independent treatment actually does involve an underlying time dependence which is equivalent
to the impact-parameter time. As we shall demonstrate in what follows, this underlying
time involves acausal effects, as viewed from the impact-parameter treatment. This will be
interpreted as a generalized impact parameter treatment.

When we use the word ‘semiclassical’ we shall be referring to the Jeffreys–Wentzel–
Kramers–Brillouin (JWKB) approximation, rather than the impact-parameter method for
which the relative motion of the heavy particles is described classically and the electrons
quantally. In some countries, the impact-parameter method is described as semiclassical!

In Bichoutskaia et al (2002) we introduce in the notation of Mott and Massey (1965, chapter
XIII, equations (10), (11)) the atomic collision problem in the two-state approximation
described in terms of two coupled radial Schrödinger equations:

d2G0l

dr2
+

(
k2

0 − l(l + 1)

r2
− U00(r)

)
G0l = U01G1l,

d2G1l

dr2
+

(
k2

1 − l(l + 1)

r2
− U11(r)

)
G1l = U10G0l

(1)

for each value of the total angular-momentum quantum number l. These may be derived
from a two-state ansatz using second-order Euler–Lagrange variational theory (for the latest
development in variational principles for second-order differential equations, see Grifone and
Muzsnay (2000)). In (1), U10 = U01 ≡ 2MV01/h̄2 is the coupling matrix element where V01

is the offdiagonal interaction matrix element for the colliding systems and the wavenumbers
k j = k j(∞), j = 0, 1, are related to the relative velocity v j (∞) of separated atoms in the
state j as

k j = Mv j (∞)

h̄
, (2)

where M is the reduced mass; r is the projectile–target separation. The distortion of state i (0
or 1) due to interaction with the state j ( j �= i) is given by the diagonal matrix element Uii (r).
The channel wavefunctions G jl are regular at the origin,

G0l(0) = G1l(0) = 0, (3)
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and satisfy, as r → ∞, the boundary conditions

G0l(r → ∞) = il sin(k0(∞)r − lπ/2) + αl exp(ik0(∞)r),

G1l(r → ∞) = βl exp(ik1(∞)r)
(4)

if the colliding entities are prepared in the state 0, where αl and βl are constants (independent
of r ). The constant βl is the inelastic amplitude related to the S-matrix element Sl

01 by

Sl
01 = 2i

√
k1(∞)

k0(∞)
βl

and the (partial) transition probability Pl is given traditionally by

Pl = 4k2
1(∞)

k2
0(∞)

|βl|2 = k1(∞)

k0(∞)
|Sl

01|2. (5)

2. Generalized impact-parameter treatment

The two coupled channel equations (1) can be transformed into four first-order ones (Bates and
Crothers (1970), to be referred to as (I)) by introducing the uncoupled channel wavefunctions
S±

j l (solutions of equation (1) without the right-hand side) containing at r → ∞ only the
outgoing and incoming waves, respectively:

S±
jl(r) ≈ k−1/2

j exp

(
±i

(
k jr − lπ

2

))
. (6)

Expanding the solutions G jl(r) in the form

G jl(r) = α+
jl(r)S+

jl(r) + α−
jl(r)S−

jl(r) (7)

leads (I) to the following exact equations for the coefficient functions α±
jl :

α+′
0l = − 1

2 iU01 S−
0l (α

+
1l S

+
1l + α−

1l S
−
1l ),

α−′
0l = + 1

2 iU01 S+
0l(α

+
1l S

+
1l + α−

1l S
−
1l ),

α+′
1l = − 1

2 iU10 S−
1l (α

+
0l S

+
0l + α−

0l S
−
0l ),

α−′
1l = + 1

2 iU10 S+
1l(α

+
0l S

+
0l + α−

0l S
−
0l ).

(8)

In terms of α±
jl the boundary conditions (3), (4) may now be written as

α−
0l (∞) = 1

2 k1/2
0 (∞), α−

1l(∞) = 0,

α+
jl(0) + α−

jl(0) = 0 ( j = 0, 1).
(9)

The advantage of representation (8) is that the properties of the uncoupled system enter the
equations through S±

jl(r). This makes (8) a convenient basis for semiclassical treatment, as
one only needs to replace the S±

jl(r) by their semiclassical asymptotes.
Thus far no approximation has been made and we have reduced two coupled second-order

differential equations to four coupled first-order equations by a method which is essentially
equivalent to the well known variation-of-parameters method.

For simplicity we consider the non-crossing model in which ε0 and ε1 are the separated-
atom eigenenergies:

U00 = U11 = 0 (10)

and define

W (r) ≡ V01(r)

v
. (11)
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In the non-crossing case k2
0 − U00(r) �= k2

1 − U11(r) for all r , whereas for pseudo- or avoided-
crossings there exists at least one r for which the inequality becomes an equality. Following (I)
we introduce the diabatic JWKB semiclassical approximation (with Langer correction)

S±
jl(r) = k−1/2

j exp

(
±i

(
π

4
+ k j

(
r − π

2
ρ j

)))
(12)

which holds asymptotically and which includes an extra ± iπ
4 , compared to equation (6) (and

with an eye on the connection formula at the classical turning point), and where we have impact
parameters given by

ρ0k0 = l + 1
2 = ρ1k1, (13)

and

ρ2 = ρ0ρ1. (14)

In contrast to the adiabatic model of slowly varying behaviour for which we could diagonalize
the matrix V (V01 �= 0), in the diabatic treatment we neglect W (i.e. V01, U01, U10) and solve the
remaining homogeneous equations (1) to obtain S±

jl(r) of (12). We define, with c0(−∞) = 1
and c1(−∞) = 0, and suppressing l

c j (z) =
{

+α+
jl(|z|) (z � 0)

−α−
jl(|z|) (z � 0)

(15)

where the path length z satisfies

|z| = v|t| =
√

r2 − ρ2. (16)

The remnant distortion (Bates 1961) is given by

µ

γ

}
=

[
k0|z| −

(
l +

1

2

)
π

2
+

π

4

]
∓

[
k1|z| −

(
l +

1

2

)
π

2
+

π

4

]
, (17)

(upper sign for µ being +− or −+ distortion, lower sign for γ being ++ or −− distortion),
so that

µ = (k0 − k1)|z| (18)

γ = (k0 + k1)|z| − lπ. (19)

Treating W as slowly varying and invoking the Gans–Jeffreys connection formula based on (9),
and by the substitution of equations (12) and (15), equations (8) may now be rewritten in the
classically allowed region (cf ‘forbidden’ region in Coveney et al (1985)) as the generalized
impact-parameter equations

idc0(z)

dz
= W [c1(z)e∓iµ − c1(−z)e∓iγ ] (20)

idc1(z)

dz
= W [c0(z)e±iµ − c0(−z)e∓iγ ] (21)

upper or lower sign according to z > 0 or z < 0. The second terms in the RHS square brackets
in equations (20) and (21) may be regarded as acausal because for negative z they have not
yet been reached by the classical trajectory. These acausal terms come from the S−

0l S−
1l and

S+
0l S

+
1l terms in (8). The difference between equations (20) and (21) and the standard impact-

parameter treatment (Bates 1961) lies entirely in the c j(−z) terms. The normal argument in
ion–atom collisions is that e±iγ averages out at zero for large γ . Mathematically, we have
c j (−z) as against c j(z) and the terms which run backwards in time do occur. We call them
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acausal terms in contrast with causal processes of movement forward in time. It follows that
the exact relations hold, namely

dc0(−z)

dz
= exp(±i(µ + γ ))

dc0(z)

dz
(22)

dc1(−z)

dz
= exp(±i(γ − µ))

dc1(z)

dz
. (23)

By inspection, these relations embrace cybernetic (or feedback) effects. To wit, if z > 0, then
earlier amplitudes (or rather, their rates of change) are given in terms of the later amplitudes.
Viewed from the impact-parameter trajectory, the absence of acausal terms in equations (20)
and (21) would negate relations (22) and (23).

3. Perturbation theory

We now apply double-perturbation theory (Born approximation)which invokes W � 1, which
implies c1(+∞) ≈ 0 and neglecting the oscillatory acausal term in (21), we obtain

idc1(z)

dz
≈ We±iµ (24)

⇒ ic1(+∞) ∼= 2
∫ ∞

0
dz W cos µ (25)

and
idc1(−z)

dz
≈ We±iγ (26)

⇒ ic1(−∞) ∼= 2
∫ ∞

0
dz W cos γ. (27)

This implies that the net inelastic transition probability is

P01 =
∣∣∣∣2

∫ ∞

0
dz W cos µ

∣∣∣∣
2

−
∣∣∣∣2

∫ ∞

0
dz W cos γ

∣∣∣∣
2

. (28)

Using Fourier transforms and the Faltung theorem (Crothers and Holt 1966), it follows that
the total cross section is

Q01/a2
0 = 2π

∫ ∞

0
ρ dρ P01(ρ) (29)

Q01/a2
0 = 1

(2πv)2

∫ k0+k1

|k0−k1 |
q dq

∫ 2π

0
dφ

∣∣∣∣
∫

dr eiqr V01(r)

∣∣∣∣
2

� 0 (30)

where the change in relative momentum of the atomic particles is

q = k0 − k1 (31)

so that

q2 = k2
0 + k2

1 − 2k0k1 cos θ (32)

where

cos θ = k̂0 · k̂1. (33)

Despite inequality (30), P01(ρ) of (28) could, in principle, lie outside the physical range [0, 1]
(Bates 1962), in which case, strictly speaking, the perturbation treatment is invalid for the
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particular ρ-domain. To rephrase, the step leading to (24) becomes invalid. Nevertheless,
since k0 +k1 > |k0 −k1|, the second integral in (28) has the higher frequency leading to greater
cancellation. This is illustrated as follows: for V01(r) ≡ exp(−αr), P01 of (28) is given by

P01 = 4α2ρ2

v2
[K 2

1 (ρ
√

α2 + (k0 − k1)2 − K 2
1 (ρ

√
α2 + (k0 + k1)2]. (34)

However, we have

K1(ζ )
ζ�1�

√
π

2ζ
exp(−ζ ) (35)

and

K1(ζ )
ζ∼0� 1

ζ
. (36)

Thus, if we take, say, α = 1, k0 = 2 and k1 = 1 (in atomic units) which are light-particle
parameters, we see that the causal term is very much larger than the acausal term, so that
the double-perturbation treatment is justified and is consistent; moreover, the link with the
first-Born wave treatment (30) is justified.

4. Discussion and conclusions

The quantity Q01 (equation (30)) is the quantal first-Born cross section in which the lower
limit corresponds to θ = 0 and is causal, whereas the upper limit corresponds to θ = π

and is acausal. The classical purely impact parameter first Born approximation comprises
k0 − k1 → (ε1 − ε0)/v and k0 + k1 → +∞. We may interpret equations (20) and (21) as
generalized impact-parameter equations with the first terms on the RHS causal and the second
terms acausal, at least as viewed from the derived time-dependent treatment which arises when
the acausal terms are neglected. Thus not only does semiclassical mechanics here interpolate
between quantal and classical mechanics, but explicitly demonstrates cybernetic effects by
which the propagation of waves −∞ to +∞ in time simultaneously invokes propagation of
waves +∞ to −∞ in time in a consistently dovetailed unitary manner, the essence of quantum
mechanics (here we are not referring to perturbation theory). Clearly our technique, based on
the Green function method of (I), generalizes to U00 �= 0 and U11 �= 0. Moreover, although
the semiclassical treatment of Stueckelberg (1932), considered in paragraph 3 of chapter XIII
of Mott and Massey (1965), concerns ion–atom collisions, our treatment given above need not
be so limited. Our treatment clearly generalizes to any number of coupled states (Bates and
Holt 1966). A simple consideration of the leading terms in both versions (with and without
the cybernetic, acausal terms) of the first Born approximation shows that the impact-parameter
treatment erroneously produces a finite cross section at threshold (Crothers and Holt 1966),
whereas the wave treatment (in the form of generalized impact-parameter equations (sic)) at
least gives a zero cross section (Wigner 1948).

As presented in this paper, the semiclassical treatment of the four exact first-order
equations (8) leads to generalized projectile–target time-dependent interaction impact
parameter equations (20), (21). These equations contain acausal behaviour embedded entirely
in the c j(−z) terms, which are absent in the standard impact parameter treatment (see, for
example, equation (2.13) of Bichoutskaia et al (2002)). The relevance of the approach
described, to ultracold collisions, lies in the consideration of equations (20) and (21) in the
closely coupled perturbed symmetric resonance model (Crothers 1973) in which both k0 and
k1 are sufficiently small, that neither causal nor acausal terms can be ignored, relative to each
other, ε1 − ε0 is small and k0 − k1 �= (ε1 − ε0)/v. The consequence is that a typical very low
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energy fine-structure ion–atom collision (Devdariani et al 2002) will yield to a generalized
impact-parameter treatment description of its experimental realization.

In conclusion, in the standard impact-parameter treatment, we may have a straight-line
trajectory at impact parameter ρ or indeed, a curved trajectory (e.g. Coulomb), each of which
has a point of closest approach, dividing the trajectory into two. On the inward half, this
corresponds to radially incoming waves: on the outward half, to radially outgoing waves.

In standard one-dimensional scattering, there are ingoing waves (incident beam) and
outgoing waves (transmitted and reflected beams); there are no ingoing waves in the negative
direction by assumption.

However, in a three-dimensional spherical interior, a priori they may simultaneously be
both radially ingoing and outgoing waves in all directions. A counter example is given by the
well known plane wave asymptotic expansion

eik·r kr�1� 2π

ikr
[eikr δ(k̂ − r̂) − e−ikr δ(k̂ + r̂)] (37)

with ingoing waves e−ikr (direction r̂ = −k̂, momentum ∼ − h̄kr̂ ) and outgoing waves eikr

(direction r̂ = k̂, momentum ∼ + h̄kr̂ ). Here, the delta functions are two-dimensional and
admittedly there is a problem at k̂ · r̂ = 0 (Crothers and Mulligan 2002). The picture here is of
a wave lying in a plane which sweeps through the spherical interior in the k direction, in, say,
the φ = 0 plane, φ being the cylindrical polar azimuthal angle. The complication, compared to
one-dimensional scattering, is that the coordinate r ∈ [0, +∞], because the distance between
two objects must always be non-negative. The plane wave can represent, in principle, an
electron, a photon, an ion, etc impinging on some fixed centre which does not perturb the
projectile.

Nevertheless, as semiclassical analysis shows, this comprises a rather classical picture in
which the impact parameter is given by (l + 1/2)/k where l is the azimuthal quantum number
of the partial wave (see also equation (13)).

When an interaction occurs, however, equations (20)–(23) show that, in quantum
mechanics, there are ingoing waves, simultaneously in both halves of the spherical interior, and
outgoing waves also in both halves of the interior, in this case φ = 0 and z ∈ [−∞, +∞]. From
the stationary Schrödinger equation point of view, this is all prescribed instantaneously. From
the generalized impact parameter treatment point of view, this comprises acausal cybernetic
effects. Of course, this would appear to be implausible at impact energies which are in any
way appreciable, but then the generalized treatment does yield the impact-parameter treatment
in such a limit.

Acknowledgment

EB is grateful to NATO/Royal Society Chevening Fellowship for financial support.

References

Abramowitz M and Stegun I A 1970 Handbook of Mathematical Functions (New York: Dover)
Bates D R 1961 Transitions Quantum Theory I Elements ed D R Bates (New York: Academic) ch 8
Bates D R 1962 Theoretical treatment of collisions between atomic systems Atomic and Molecular Processes

ed D R Bates (New York: Academic) ch 14
Bates D R and Crothers D S F 1970 Proc. R. Soc. A 315 465
Bates D R and Holt A R 1966 Proc. R. Soc. A 292 168
Bichoutskaia E, Crothers D S F and Sokolovski D 2002 Proc. R. Soc. A 458 1399
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