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ABSTRACT
An analytical solution describing the electrostatic interaction between particles with inhomogeneous surface charge distributions has been
developed. For particles, each carrying a single charge, the solution equates to the presence of a point charge residing on the surface, which
makes it particularly suitable for investigating the Coulomb fission of doubly charged clusters close to the Rayleigh instability limit. For a series
of six separate molecular dication clusters, center-of-mass kinetic energy releases have been extracted from experimental measurements of
their kinetic energy spectra following Coulomb fission. These data have been compared with Coulomb energy barriers calculated from the
electrostatic interaction energies given by this new solution. For systems with high dielectric permittivity, results from the point charge
model provide a viable alternative to kinetic energy releases calculated on the assumption of a uniform distribution of surface charge. The
equivalent physical picture for the clusters would be that of a trapped proton. For interacting particles with low dielectric permittivity, a
uniform distribution of charge provides better agreement with the experimental results.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5119347., s

I. INTRODUCTION

The behavior of multiply charged clusters and nanodroplets
close to the Rayleigh instability limit is a phenomenon of broad
relevance and practical importance for a wide range of processes,
including electrospray ionization1,2 and the separation of carbon
nanotubes.3 Identifying the point at which highly charged, finite
collections of atoms and molecules become unstable has been the
subject of numerous experimental and theoretical studies,4–14 but it
is only recently that detailed patterns of charge separation close to
the Rayleigh instability limit have been established.15,16 Molecular
systems for which specific fragmentation patterns have been mapped
include (H2O)2+

n , (NH3)2+
n , (CH3CN)2+

n , (C5H5N)2+
n , (C6H6)2+

n ;16

(C6H6)z+
n , (CH3CN)z+

n , and (C4H8O)z+
n with z = 3 and z = 4;17 and

(NH3)z+
n clusters with z ≤ 8.18 Precise quantitative data are available

for a range of doubly charged clusters, where Coulomb fission has
been shown to result in asymmetric fragmentation and the forma-
tion of two singly charged clusters.15,16 For these latter examples, an
accurate determination of the center-of-mass kinetic energy release
(KER) can provide a measure of the Coulomb repulsion experi-
enced by the two fragments as they separate. The exact mechanisms
leading to charge separation is still the subject of intense interest,
but experiments show that the outcome of the fragmentation step
depends on the size and, to some extent, the composition of a clus-
ter.16 This combined experimental and theoretical study of cluster
dication fragmentation16 showed that the barrier to charge separa-
tion depends strongly on the dielectric constant (or polarizability)
of a cluster. In these examples, Coulomb fission has been modeled
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using a theory of electrostatic interactions that has been developed
for charged particles of dielectric materials.19 The theory assumes
that, for each fission product, the single free charge is uniformly dis-
tributed over the surface of the latter, an approach that has been
more widely adopted in the literature (see Refs. 20–23 and the ref-
erences therein). A more general solution to this problem has been
proposed by Munirov and Filippov.20

Whether the assumption of a uniform positive or negative
charge distribution over the surface of a particle is an appropriate
description is open to speculation. The alternative is to assume that
charge is localized, possibly in the form of, for example, a proton in
the case of a positive charge or as a surface quantum state in the case
of an excess electron. There are a number of examples where exper-
imental data have been interpreted in terms of a localized charge.
For example, the anomalous behavior of (H2O)2+

21 has been inter-
preted as H3O+ localized at the center of a water cluster24–29 and a
similar picture of a localized central charge has been proposed to
explain optical spectra recorded from xenon cluster ions, Xe+

n .30 For
these examples, which are essentially spherical clusters with point
charges at their centers, Gauss’s law states that such a configuration
generates a potential equivalent to that of the charge being uni-
formly distributed across the surface. In the case of singly charged
anionic clusters, a combination of separate solvated and surface-
bound states has been used to account for experimental electron
photodetachment spectra.31–33 For multiply charged clusters, theo-
retical studies of the stability of rare gas clusters have been modeled
on collections of surface-bound charges each occupying a position
determined predominately by Coulomb repulsion.10,14 In contrast,
molecular dynamics simulations of mixed water/ammonia/methanol
clusters show that charge carriers in the form of NH+

4 are distributed
throughout.34

As an alternative to the assumption of a homogeneous distribu-
tion of free charge over the surface of the interacting particles, this
paper considers the case where, for two charged, dielectric, spher-
ical particles originating from Coulomb fission, there are inhomo-
geneous distributions of free charge on their surfaces. The charge
distributions are described by δ-functions of angular variables, and a
general solution is derived for a point charge of one elementary unit
residing on the surface of each particle of arbitrary radius. The pro-
posed solution is ideally suited to the study of processes involving the
coalescence and Coulomb fission of charged clusters, liquid droplets,
and other nanoscale particles, where the particles concerned carry-
ing one or few elementary charges (in absolute value). It may also
be relevant for the study of electrostatic interactions between patchy
colloidal particles.35 The model is tested against fragmentation data
recorded of a series of doubly charged molecular clusters composed
of benzene, tetrahydrofuran (THF), pyridine, ammonia, acetoni-
trile, and water molecules. In particular, values predicted for the
Coulomb repulsion energy between separating fragments are com-
pared with accurate kinetic energy release measurements extracted
from experimental data.

II. ELECTROSTATIC INTERACTION ENERGY
OF INHOMOGENEOUSLY DISTRIBUTED
FREE CHARGES

To account for an inhomogeneous distribution of free charge
residing on the surface of the interacting particles, we assume a

δ-function distribution of charge that is dependent on angular vari-
ables and the problem is solved following an approach proposed by
Munirov and Filippov.20

A. Geometry of the problem and expansion
of the electrostatic potential

We consider two spherical particles with radii a1 and a2 and
charges q1 and q2, which are generally nonuniformly distributed
over their surfaces; the particles have dielectric constants ε1 and ε2,
and they are placed in a uniform dielectric medium with permittivity
ε. We introduce a Cartesian coordinate system such that the z-axis
is directed along a line connecting the centers of the particles (see
Fig. 1). The choice of the plane xz remains arbitrary.

In bispherical coordinates,36–38 denoted as (ξ, η, φ) (see Fig. 1),

x =
a sinη cosφ

cosh ξ − cosη
, y =

a sinη sinφ
cosh ξ − cosη

, z =
a sinh ξ

cosh ξ − cosη
,

where a = a1 sinh ξ1 = a2 sinh ξ2 and ξ1 and ξ2 are the coordinate
surfaces, which coincide with the surfaces of the particles such that

cosh ξ1 =
R2 + a2

1 − a
2
2

2Ra1
, cosh ξ2 =

R2 + a2
2 − a

2
1

2Ra2
,

where R is the distance between centers of the particles: R = z1
− z2 = a(coth ξ1 + coth ξ2) = a1 cosh ξ1 + a2 cosh ξ2, z1 and z2 are
the z-coordinates of centers of the particles,

z1 = a coth ξ1 = a1 cosh ξ1, z2 = −a coth ξ2 = −a2 cosh ξ2.

The Lame coefficients hξ , hη, and hφ in bispherical coordinates are
determined from the following expressions:38

hξ = hη =
a

cosh ξ − cosη
, hφ =

a sinη
cosh ξ − cosη

. (1)

The electrostatic interaction between particles in a uniform
dielectric is determined by the Laplace equation Δϕ = 0, which in
bispherical coordinates can be solved by separating variables with
the introduction of a new quantity,

FIG. 1. Geometry describing the interaction between two particles with radii a1 and
a2 in a bispherical coordinate system (ξ, η, φ).
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ϕ(ξ,η,φ) = ψ(ξ,η,φ)
√

cosh ξ − cosη,

where ϕ is the electrostatic potential. The bound solutions of the
Laplace equation in bispherical coordinates for regions inside (ψI
and ψII) and outside the particles (ψIII) can be represented as follows:

ψI(ξ,η,φ) =
∞

∑
ℓ=0

ℓ

∑
m=0
[Am

ℓ cos(mφ) + A−mℓ sin(mφ)]

× e−(ℓ+ 1
2 )ξPm

ℓ (cosη), (2)

ψII(ξ,η,φ) =
∞

∑
ℓ=0

ℓ

∑
m=0
[Bm

ℓ cos(mφ) + B−mℓ sin(mφ)]

× e(ℓ+ 1
2 )ξPm

ℓ (cosη), (3)

ψIII(ξ,η,φ) =
∞

∑
ℓ=0

ℓ

∑
m=0
{[Cm

ℓ cos(mφ) + C−mℓ sin(mφ)]e−(ℓ+ 1
2 )ξ

+ [Dm
ℓ cos(mφ)+D−mℓ sin(mφ)]e(ℓ+ 1

2)ξ}Pm
ℓ (cosη), (4)

where Pm
ℓ (cosη) is the Legendre polynomial function, and the

potential expansion coefficients A±mℓ , B±mℓ , C±mℓ , and D±mℓ are deter-
mined in Appendix A.

The electrostatic potential satisfies the following boundary
conditions:39

ϕ ∣ξ=ξ1−0= ϕ ∣ξ=ξ1+0, ϕ ∣ξ=−ξ2−0= ϕ ∣ξ=−ξ2+0, (5)

ε
1
hξ

∂ϕ
∂ξ
∣ξ=ξ1−0 −ε1

1
hξ

∂ϕ
∂ξ
∣ξ=ξ1+0 = 4πσ1,

ε2
1
hξ

∂ϕ
∂ξ
∣ξ=−ξ2−0 −ε

1
hξ

∂ϕ
∂ξ
∣ξ=−ξ2+0 = 4πσ2,

(6)

where σ1, σ2 are the surface densities of free charge residing on the
particles, which are generally functions of η and φ.

The distribution of surface charge is usually given in a spherical
coordinate system with the origin at the center of the ith particle as

σi(θi,φ) =
∞

∑
n=0

n

∑
m=0
(σmi,n cosmφ + σ−mi,n sinmφ)

×Pm
n (cos θi), i = 1, 2. (7)

Here, θi is the polar angle of a point on the surface of the ith parti-
cle with a pole at its center, i.e., the angle between the radius vector
to the point in question and the positive direction of the z-axis is
denoted by θ10 and θ20 in Fig. 1, and φ is the azimuthal angle of this
point. Decomposition of the surface charge represented by Eq. (7)
in the bispherical coordinate system has been proposed by Munirov
and Filippov,20

σi(η,φ) =
√

cosh ξi − cosη
∞

∑
ℓ=0

ℓ

∑
m=0
(σ̃ m

i,ℓ cosmφ + σ̃ −mi,ℓ sinmφ)

× e−(ℓ+ 1
2 )∣ξi ∣Pm

ℓ (cosη), (8)

where

σ̃ ±mi,ℓ =
∞

∑
n=m

bnmi,ℓ σ
±m
i,n , (9)

and the decomposition coefficients bnmi,ℓ are defined by the following
expression:

bnmi,ℓ = 2m+ 1
2 e−(n−m)ξi sinhm ξi

(ℓ −m)!
(ℓ + m)!

×

min(ℓ,n)−m

∑
ν=0
(−1)n−m+νe2νξi (ℓ + n − ν)!

ν!(n −m − ν)!(ℓ −m − ν)!
. (10)

In the case of a uniform surface charge distribution in Eq. (7),
n = 0, and using Eq. (10), we obtain

b00
i,ℓ = 2

1
2 , bnmi,ℓ = 0 for n > 0, m ≥ 0. (11)

For the case of an axially symmetric charge distribution, m = 0, such
that

σi(θi) =
∞

∑
n=0

σi,nPn(cos θi), i = 1, 2, (12)

and from Eq. (10), we obtain

bni,ℓ =
√

2e−nξi
min(ℓ,n)

∑
ν=0
(−1)n+νe2νξi (ℓ + n − ν)!

ν!(n − ν)!(ℓ − ν)!
. (13)

B. Point charges represented by δ-functions
on the surfaces of particles

In a bispherical coordinate system, the charge located on the
surface of a sphere at the position defined by the coordinates ηi0 and
φi0 (i = 1, 2) can be expressed as

σi(η,φ) = σi0δ(cosη − cosηi0)δ(φ − φi0). (14)

The value of σi0 is determined by integration of the charge distribu-
tion (14) over the surface of the ith particle,

qi =∬
Ωi

σi(η,φ)hηhφdηdφ =
a2σi0

(cosh ξi − cosηi0)2 , (15)

leading to the following expressions:

σi0 =
qi
a2 (cosh ξi − cosηi0)2 (16)

and

σi(η,φ) =
qi
a2 (cosh ξi − cosηi0)2δ(cosη − cosηi0)δ(φ − φi0). (17)

Equation (17) can be expressed in the form of Eq. (8). Taking

Si =
σi

√
cosh ξi − cosη

(18)

and using (8), Si(η, φ) can be represented as

Si(η,φ) =
∞

∑
ℓ=0

ℓ

∑
m=0
(σ̃ m

i,ℓ cosmφ + σ̃ −mi,ℓ sinmφ)e−(ℓ+ 1
2 )∣ξi ∣Pm

ℓ (cosη),

(19)

which using (17) gives

Si(η,φ) =
qi
a2 (cosh ξi − cosηi0)3/2

¿
Á
ÁÀ cosh ξi − cosηi0

cosh ξi − cosη

× δ(cosη − cosηi0)δ(φ − φi0). (20)
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Multiplying Eqs. (19) and (20) by cos(mφ)Pm
n (cosη) or

sin(mφ)Pm
n (cosη) and integrating over sin ηdηdφ using Eqs. (C5)

and (C6), we obtain from (19)

2π

∫

0

π

∫

0

Si(η,φ){cosmφ
sinmφ}P

m
n (cosη) sinηdηdφ

=
2π

2n + 1
(n + m)!
(n −m)!

{
(1 + δm0)σ̃ m

i,n
(1 − δm0)σ̃ −mi,n

}e−(n+ 1
2 )∣ξi ∣ (21)

and from (20)

2π

∫

0

π

∫

0

Si(η,φ){cosmφ
sinmφ}P

m
n (cosη) sinηdηdφ

=
qi
a2 (cosh ξi − cosηi0)3/2

{
cosmφi0
sinmφi0

}Pm
n (cosηi0). (22)

Equations (21) and (22) can be combined to give

{
σ̃ m
i,n

σ̃ −mi,n
} =

2n + 1
2π

(n −m)!
(n + m)!

qi
a2 e

(n+ 1
2 )∣ξi ∣(cosh ξi − cosηi0)3/2

×{
1

1+δm0
cosmφi0

sinmφi0
}Pm

n (cosηi0). (23)

For η = 0, π and φ = 0, 2π, we should consider the limits of η→ 0+0,
π−0 and φ→ 0+0, 2π−0.

Since the choice of the xz plane is arbitrary, it is chosen such
that φ10 = 0. In this case, for decomposition of the surface charge of
the first particle, terms with negative index “−m” are equal to zero.
Note that for fixed ηi0, the charge moves across the surface as the
interparticle distance changes. To avoid this, it is necessary to specify
an angle in a spherical coordinate system with a pole at the center of
each particle. Therefore, we have

cosη10 = cosh ξ1 −
sinh2 ξ1

cosh ξ1 + cos θ10
, (24)

cosη20 = cosh ξ2 −
sinh2 ξ2

cosh ξ2 − cos θ20
, (25)

where θ10, θ20 are polar angles in a spherical coordinate system with
poles at the centers of the first and second particles, respectively. For
the case of several point charges present on the surface, it is necessary
to sum expression (23) for each charge.

From Eqs. (8) and (23), we obtain the following expression for
the distribution of density of free charge:

σi(η,φ) =
qi
a2 (cosh ξi − cosηi0)3/2√cosh ξi − cosη

×
∞

∑
ℓ=0

ℓ

∑
m=0

2ℓ + 1
2π
(ℓ −m)!
(ℓ + m)!

(
1

1 + δm0
cosmφi0 cosmφ

+ sinmφi0 sinmφ)Pm
ℓ (cosη)Pm

ℓ (cosηi0), i = 1, 2. (26)

In the case of an axially symmetric system, we proceed from the
relationship

σi = σi0δ(cosη − cosηi0) (27)

and find that

σi0 =
qi

2πa2 (cosh ξi − cosηi0)2. (28)

Therefore, recalling that the δ-function is a functional, we give the
distribution of surface charge a convenient form,

σi(η,φ) =
qi

2πa2 (cosh ξi − cosηi0)3/2√cosh ξi − cosη

× δ(cosη − cosηi0). (29)

From Eqs. (8) and (29), proceeding with similar steps to those used
to obtain Eq. (26), we derive the distribution of axially symmetric
free charge

σi(η,φ) =
qi

4πa2 (cosh ξi − cosηi0)3/2√cosh ξi − cosη

×
∞

∑
ℓ=0
(2ℓ + 1)Pℓ(cosη)Pℓ(cosηi0), i = 1, 2. (30)

Taking into account Eq. (C1), this leads to Eq. (29).
An alternative method of representing the surface charge den-

sity in the presence of point charges defined by a δ-function is shown
in Appendix B. This method has been derived in spherical coordi-
nates. Our numerical tests show that this alternative approach is less
effective and requires significantly more computational resources.
Therefore, in this paper, all calculations have been performed using
the method described in this section. In numerical solutions to the
problem, a finite number of terms are considered up to a given value:
ℓ = ℓmax, where the accuracy of representation (29) using finite terms
can be examined using expression (C3).

C. Density of the total surface charge
The distribution of the total charge density on the surface of

particles is determined from a discontinuity of the normal compo-
nent of the electric field,

σ1,t =
1

4πhξ
∂ϕIII
∂ξ
∣

ξ=ξ1

−
1

4πhξ
∂ϕI
∂ξ
∣

ξ=ξ1

,

σ2,t =
1

4πhξ
∂ϕII
∂ξ
∣

ξ=−ξ2

−
1

4πhξ
∂ϕIII
∂ξ
∣

ξ=−ξ2

.

(31)

From the boundary condition (5), it follows that

A±mℓ = C±mℓ + D±mℓ e(2ℓ+1)ξ1 ,

B±mℓ = C±mℓ e(2ℓ+1)ξ2 + D±mℓ .
(32)

Using Eqs. (2)–(4) and (32), we obtain from Eq. (31)

σ1,t =
(cosh ξ1 − cosη)3/2

4πa1 sinh ξ1

∞

∑
ℓ=0

ℓ

∑
m=0
(2ℓ + 1)[Dm

ℓ cos(mφ)

+D−mℓ sin(mφ)]e(ℓ+ 1
2 )ξ1 Pm

ℓ (cosη), (33)

σ2,t =
(cosh ξ2 − cosη)3/2

4πa2 sinh ξ2

∞

∑
ℓ=0

ℓ

∑
m=0
(2ℓ + 1)[Cm

ℓ cos(mφ)

+C−mℓ sin(mφ)]e(ℓ+ 1
2 )ξ2 Pm

ℓ (cosη). (34)
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For the axially symmetric problem, Eqs. (33) and (34) are reduced to

σ1,t =
(cosh ξ1 − cosη)3/2

4πa1 sinh ξ1

∞

∑
ℓ=0
(2ℓ + 1)Dℓe

(ℓ+ 1
2 )ξ1Pℓ(cosη),

σ2,t =
(cosh ξ2 − cosη)3/2

4πa2 sinh ξ2

∞

∑
ℓ=0
(2ℓ + 1)Cℓe

(ℓ+ 1
2 )ξ2Pℓ(cosη).

(35)

Note from Eqs. (33)–(35) that the distribution of total charge
includes the quantities Dℓe(ℓ+ 1

2 )ξ1 and Cℓe(ℓ+ 1
2 )ξ2 , and this is unlike

the expression for the electrostatic force derived in Sec. II D, where
the force is defined simply from products of the expansion coeffi-
cients of the electrostatic potential. In the case of a uniform distri-
bution of free surface charge, this does not present any difficulties,
as F±mℓ used in expression (A1) and defined by Eq. (A5) decrease
exponentially with ℓ and, accordingly, Dℓe(ℓ+ 1

2 )ξ1 and Cℓe(ℓ+ 1
2 )ξ2 also

decrease exponentially. In the case of a δ-like distribution of free
charge, F±mℓ in (A5) is expressed as (the upper line in curly brackets
refers to the index “+m,” and the lower line refers to “−m”)

F±mℓ,i =
4qi
a
(2ℓ + 1)

(ℓ −m)!
(ℓ + m)!

(cosh ξi − cosηi0)3/2

×{
1

1+δm0
cosmφi0

sinmφi0
}Pm

ℓ (cosηi0), (36)

and the values are of order O(1) for all ℓ.
We next consider the simple case of an axially symmet-

ric system. In this case, from (A1)–(A5), we obtain [denoting
yℓ = (Cℓ,Dℓ)

T]

−Aℓyℓ−1 + Cℓyℓ − Bℓyℓ+1 = Fℓ (ℓ = 0, 1, . . .∞), (37)

where

Aℓ = ℓ
⎛
⎜
⎝

(ε1 − ε)e−(ℓ−
1
2 )ξ1 (ε1 + ε)e(ℓ−

1
2 )ξ1

(ε2 + ε)e(ℓ−
1
2 )ξ2 (ε2 − ε)e−(ℓ−

1
2 )ξ2

⎞
⎟
⎠

, (38)

(Cℓ)11 = (ε − ε1)[sinh ξ1 − (2ℓ + 1) cosh ξ1]e−(ℓ+ 1
2 )ξ1 ,

(Cℓ)12 = [(ε − ε1) sinh ξ1 + (2ℓ + 1)(ε + ε1) cosh ξ1]e(ℓ+ 1
2 )ξ1 ,

(Cℓ)21 = [(ε − ε2) sinh ξ2 + (2ℓ + 1)(ε + ε2) cosh ξ2]e(ℓ+ 1
2 )ξ2 ,

(Cℓ)22 = (ε − ε2)[sinh ξ2 − (2ℓ + 1) cosh ξ2]e−(ℓ+ 1
2 )ξ2 ,

(39)

Bℓ = (ℓ + 1)
⎛

⎝

(ε1 − ε)e−(ℓ+ 3
2 )ξ1 (ε1 + ε)e(ℓ+ 3

2 )ξ1

(ε2 + ε)e(ℓ+ 3
2 )ξ2 (ε2 − ε)e−(ℓ+ 3

2 )ξ2

⎞

⎠
, (40)

Fℓ =
⎛

⎝

8πaσ̃ 1,ℓe−(ℓ+ 1
2 )ξ1

8πaσ̃ 2,ℓe−(ℓ+ 1
2 )ξ2

⎞

⎠
. (41)

For sufficiently high values of ℓ, the diagonal elements of matri-
ces Aℓ, Bℓ, and Cℓ become negligible because, even with δ-localized
charges, they decrease with ℓ as e−ℓξ1 or e−ℓξ2 . Therefore, at suffi-
ciently large ℓ ≥ Lmax, the expansion coefficients of the potential for

each particle cease to depend on their own charge. In this case, if we
introduce new variables

ĉℓ = Cℓe
(ℓ+ 1

2 )ξ2 , d̂ℓ = Dℓe
(ℓ+ 1

2 )ξ1 (42)

for ℓ ≥ Lmax systems, Eq. (37) takes the form

− ℓd̂ℓ−1 +[(
ε − ε1

ε+ε1
) sinh ξ1 +(2ℓ + 1) cosh ξ1]d̂ℓ − (ℓ + 1)d̂ℓ+1

= fℓ,1 ≡
Fℓ,1

ε + ε1
,

− ℓ ĉℓ−1 +[(
ε−ε2

ε + ε2
) sinh ξ2 +(2ℓ + 1) cosh ξ2]̂cℓ − (ℓ + 1)̂cℓ+1

= fℓ,2 ≡
Fℓ,2

ε + ε2
.

(43)

For a uniform distribution of free surface charge, Eq. (41) reduces to

Fℓ =
⎛

⎝

2
√

2 q1 sinh ξ1
a1

e−(ℓ+ 1
2 )ξ1

2
√

2 q2 sinh ξ2
a2

e−(ℓ+ 1
2 )ξ2

⎞

⎠
, (44)

and for δ-type charges localized along the z-axis give

Fℓ,i = 8πaσ̃ i,ℓe
−(ℓ+ 1

2 )ξi

=
2qi
a
(2ℓ + 1)(cosh ξi − cosηi0)3/2Pℓ(cosηi0). (45)

In the case of δ-localized charges, one can see from Eqs. (43) and (45)
that with increasing ℓ, the new coefficients ĉℓ and d̂ℓ remain of the
order of O(1), and calculation of the total charge density distribution
is not trivial.

For ℓ ≥ Lmax, matrices (38)–(40) take the following form (for
new variables):

Aℓ = (
0 ℓ

ℓ 0
), (46)

(Cℓ)11 = 0,

(Cℓ)12 = [(
ε − ε1

ε + ε1
) sinh ξ1 + (2ℓ + 1) cosh ξ1],

(Cℓ)21 = [(
ε − ε2

ε + ε2
) sinh ξ2 + (2ℓ + 1) cosh ξ2],

(Cℓ)22 = 0,

(47)

Bℓ = (
0 (ℓ + 1)

(ℓ + 1) 0
). (48)

Using the matrix sweep method described in Appendix A
requires the introduction of a direct sweep matrix αℓ+1 (A7), which
for ℓ ≥ Lmax also takes on a diagonal form

αℓ+1 =
⎛

⎝

Bℓ,21
Cℓ,21−Aℓ,21αℓ,11

0

0 Bℓ,12
Cℓ,12−Aℓ,12αℓ,22

⎞

⎠
. (49)

In the limit of ℓ→∞, Eq. (49) leads to

αℓ+1 =
⎛

⎝

(2 cosh ξ2 − αℓ,11)
−1 0

0 (2 cosh ξ1 − αℓ,22)
−1

⎞

⎠
, (50)
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and from the condition αℓ+1 = αℓ, we obtain

αℓ+1 =
⎛

⎝

e−ξ2 0

0 e−ξ1

⎞

⎠
. (51)

For the vector βℓ+1 from Eq. (A7), one can obtain

βℓ+1,1 =
Aℓ,21βℓ,1 + Fℓ,2

Cℓ,21 − Aℓ,21αℓ,11
,

βℓ+1,2 =
Aℓ,12βℓ,2 + Fℓ,1

Cℓ,12 − Aℓ,12αℓ,22
,

(52)

which in the limit of ℓ→∞ gives

βℓ+1,1 =
βℓ,1 + 2fℓ,2/(2ℓ + 1)

2 cosh ξ2 − αℓ,11
= e−ξ2(βℓ,1 +

2fℓ,2

2ℓ + 1
),

βℓ+1,2 =
βℓ,2 + 2fℓ,1/(2ℓ + 1)

2 cosh ξ1 − αℓ,22
= e−ξ1(βℓ,2 +

2fℓ,1

2ℓ + 1
).

(53)

These expressions show that in the case of a uniform distribution
of surface charge, βℓ+1,1 = βℓ,1e−ξ2 and βℓ+1,2 = βℓ,2e−ξ1 , i.e., as ℓ
increases, they tend to zero. For the case of a point (or circumfer-
ential distribution) of δ-localized charge lying on the axis, we have
that

βℓ+1,1 = e
−ξ2[βℓ,1 +

4q2

a(ε + ε2)
(cosh ξ2 − cosη20)

3/2Pℓ(cosη20)],

(54)

βℓ+1,2 = e
−ξ1[βℓ,2 +

4q1

a(ε + ε1)
(cosh ξ1 − cosη10)

3/2Pℓ(cosη10)].

For large ℓ, when δ-localized charges are located on the z-axis (i.e., at
ηi0 = 0 or π), coefficients βℓ+1,i tend to a constant value determined
by the following relations:

βℓ+1 = (
b1,ℓPℓ(cosη20)

b2,ℓPℓ(cosη10)
), (55)

where

b1,ℓ =
4q2

a(ε + ε2)

(cosh ξ2 − cosη20)
3/2

eξ2 − Pℓ−1(cosη20)/Pℓ(cosη20)
,

b2,ℓ =
4q1

a(ε + ε1)

(cosh ξ1 − cosη10)
3/2

eξ1 − Pℓ−1(cosη10)/Pℓ(cosη10)
.

(56)

We can now write the asymptotic solution of the system (A7)
(which we denote as c̃ℓ and ãℓ) in the following form:

c̃ℓ = e
−ξ2 c̃ℓ+1 + b1,ℓPℓ(cosη20),

d̃ℓ = e
−ξ1 d̃ℓ+1 + b2,ℓPℓ(cosη10).

(57)

For a sufficiently large number ℓ = N (N can be equal to
infinity), solution (57) takes the form

c̃ℓ =
N−ℓ

∑
n=0

e−nξ2b1,ℓ+nPℓ+n(cosη20),

d̃ℓ =
N−ℓ

∑
n=0

e−nξ1b2,ℓ+nPℓ+n(cosη10).

(58)

The analysis of the asymptotic expression (C4) shows that constancy
(in absolute value) of the ratio of two neighboring Legendre polyno-
mials Pℓ/Pℓ−1 is only possible if θi0 = 0 and θi0 = π (repeated cycles
are at θi0 = πp/q, where p and q are integers).

Finally, we consider the case of point charges lying on the z axis.
In this case, cos ηi0 = 1, Pℓ(cosηi0) = 1 or cos ηi0 = −1, Pℓ(cosηi0)
= (−1)ℓ, and the coefficients bi ,ℓ cease to depend on ℓ and become
constant. From Eq. (58), we obtain

c̃ℓ = Pℓ(cosη20) b1 lim
N→∞

N−ℓ

∑
n=0
(cosη20)

ne−nξ2

=
b1

1 − cosη20e−ξ2
Pℓ(cosη20),

d̃ℓ = Pℓ(cosη10) b2 lim
N→∞

N−ℓ

∑
n=0
(cosη10)

ne−nξ1

=
b2

1 − cosη10e−ξ1
Pℓ(cosη10),

(59)

and from Eq. (56), we obtain

b1 =
4q2

a(ε + ε2)

(cosh ξ2 − cosη20)
3/2

eξ2 − cosη20
,

b2 =
4q1

a(ε + ε1)

(cosh ξ1 − cosη10)
3/2

eξ1 − cosη10
.

(60)

These expressions show that for sufficiently large ℓ > Lmax, the
coefficients b1 and b2 do not depend on ℓ.

For high multipole expansion terms of the total surface charge
shown in (35), we find

σ1,tp =
(cosh ξ1 − cosη)3/2

4πa

∞

∑
ℓ=Lmax

(2ℓ + 1)d̃ℓPℓ(cosη),

σ2,tp =
(cosh ξ2 − cosη)3/2

4πa

∞

∑
ℓ=Lmax

(2ℓ + 1)̃cℓPℓ(cosη).

(61)

Using relations (C1) and (C3), from Eq. (61), we obtain

σ1,tp =
(cosh ξ1 − cosη)3/2

4πa
b2

1 − e−ξ1 cosη10

1
cosη10 − cosη

×{2δ(cosη10 − cosη) + (L − 1)[PL−1(cosη10)PL(cosη)

−PL(cosη10)PL−1(cosη)]}, (62)

σ2,tp =
(cosh ξ2 − cosη)3/2

4πa
b1

1 − e−ξ2 cosη20

1
cosη20 − cosη

×{2δ(cosη20 − cosη) + (L − 1)[PL−1(cosη20)PL(cosη)

−PL(cosη20)PL−1(cosη)]}. (63)

Taking the lower summation limit in (61) as 0 together with
relationship (C1) and accounting for the fact that the delta-function
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δ(cosηi0 − cosη) at cos ηi0 ≠ cos η is equal to zero, we find from (35)
that

σ1,t =
(cosh ξ1 − cosη)3/2

4πa1 sinh ξ1

∞

∑
ℓ=0
(2ℓ + 1)(d̂ℓ − d̃ℓ)Pℓ(cosη),

σ2,t =
(cosh ξ2 − cosη)3/2

4πa2 sinh ξ2

∞

∑
ℓ=0
(2ℓ + 1)(ĉℓ − c̃ℓ)Pℓ(cosη).

(64)

D. Electrostatic interaction force
The Maxwell tensor of tensions can be used39 to calculate

the electrostatic force applied to a dielectric body. In reference to
Fig. 1, we perform calculations of the electrostatic force for a particle
located on the positive side of the z axis such that the repulsion force
due to the presence of a second particle is positive and the attraction
is negative,

F=∮
S

T1ndS, (65)

where

T1n =
ε

4π
(EnE −

1
2
nE2
)∣ξ=ξ1

≡
ε

4π
(

1
2
(E2

n − E
2
τ)n + EnEττ)∣ξ=ξ1

, (66)

En =
1
hξ

∂ϕ
∂ξ
∣
ξ=ξ1

, n = −eξ ,

Eτ = −
1
hη

∂ϕ
∂η
∣
ξ=ξ1

, τ = eη;

e are orthonormal basis vectors. For Cartesian components of the
interaction force, Munirov and Filippov20 found

F1x =
ε
4

∞

∑
ℓ=1

ℓ(ℓ + 1)[D1
ℓ(Cℓ−1 + Cℓ+1 − 2Cℓ)

−C1
ℓ(Dℓ−1 + Dℓ+1 − 2Dℓ)] +

ε
8

∞

∑
ℓ=2

ℓ−1

∑
m=1

(ℓ + m + 1)!
(ℓ −m − 1)!

× [Dm+1
ℓ (Cm

ℓ−1 + Cm
ℓ+1 − 2Cm

ℓ ) + D−(m+1)
ℓ

× (C−mℓ−1 + C−mℓ+1 − 2C−mℓ ) − C
m+1
ℓ (Dm

ℓ−1 + Dm
ℓ+1 − 2Dm

ℓ )

−C−(m+1)
ℓ (D−mℓ−1 + D−mℓ+1 − 2D−mℓ )], (67)

F1y =
ε
4

∞

∑
ℓ=1

ℓ(ℓ + 1)[D−1
ℓ (Cℓ−1 + Cℓ+1 − 2Cℓ)

−C−1
ℓ (Dℓ−1 + Dℓ+1 − 2Dℓ)] +

ε
8

∞

∑
ℓ=2

ℓ−1

∑
m=1

(ℓ + m + 1)!
(ℓ −m − 1)!

× [D−(m+1)
ℓ (Cm

ℓ−1 + Cm
ℓ+1 − 2Cm

ℓ ) −D
m+1
ℓ

× (C−mℓ−1 + C−mℓ+1 − 2C−mℓ ) − C
−(m+1)
ℓ (Dm

ℓ−1 + Dm
ℓ+1 − 2Dm

ℓ )

+Cm+1
ℓ (D−mℓ−1 + D−mℓ+1 − 2D−mℓ )], (68)

F1z =
ε
4

∞

∑
ℓ=0

ℓ

∑
m=0
(2ℓ + 1)

(ℓ + m)!
(ℓ −m)!

(Cm
ℓ D

m
ℓ + C−mℓ D−mℓ )

−
ε
4

∞

∑
ℓ=0

ℓ

∑
m=0

(ℓ + m + 1)!
(ℓ −m)!

[(Cm
ℓ D

m
ℓ+1 + C−mℓ D−mℓ+1)

+ (Cm
ℓ+1D

m
ℓ + C−mℓ+1D

−m
ℓ )]. (69)

Here, it is assumed that C−mℓ = Cm
ℓ and D−mℓ = Dm

ℓ for m = 0.
For the case of uniformly charged particles, only the z-

component of the electrostatic force is nonzero, as follows from
Eqs. (67)–(69), and has the following form:

F1z =
ε
2

∞

∑
n=0

Cn[(2n + 1)Dn − (n + 1)Dn+1 − nDn−1]

≡
ε
2

∞

∑
n=0

Dn[(2n + 1)Cn − (n + 1)Cn+1 − nCn−1]. (70)

III. EXPERIMENTAL SECTION
As discussed in earlier publications,16–18 observations on the

fragmentation patterns of multiply charged molecular clusters have
been undertaken on an apparatus that combines a high resolution
reversed geometry mass spectrometer (VG Analytical ZAB-E) with
a pulsed supersonic cluster source. Neutral molecular clusters from
each of the liquids were ionized by 70 eV electrons and the ion
beam extracted from the ion source at a potential of between +5
and +7 kV into the flight tube of the mass spectrometer. Dou-
bly charged cluster ions, Mn

2+, with values of n known to be close
to the Coulomb instability limit have been mass-selected using a
magnet, and the ionic products of Coulomb fission in the second
field-free region (2ffr) between the magnet and an electrostatic ana-
lyzer (ESA) were identified by scanning the voltage on the latter.
This linked-scan procedure provides a mass-analyzed ion kinetic
energy (MIKE) spectrum,40 which can be used to identify ionic frag-
ments according to their laboratory-frame kinetic energy. In addi-
tion, the energy spread in a peak can be related to the center-of-
mass kinetic energy released during Coulomb fission;40 in effect,
this is a measure of the repulsion experienced by the two positively
charged ions as they separate. To detect the principal charged frag-
ment from the fission of a doubly charged cluster, the ESA was
scanned to record ionic fragments with laboratory-frame kinetic
energies of between 5 and 7 and 10 keV. Within this energy range,
there are no background ion signals from other processes, such as
the loss of neutral molecules, which means the very weak signals
that arise from Coulomb fission can be recorded without inter-
ference. However, this approach does mean that only the largest
of the charged fragments is detected, and therefore, the size of
the smaller fragment has to be inferred from mass and charge
balance.

Figure 2 gives an example of a kinetic energy spectrum recorded
following the Coulomb fission of [(H2O)37]

2+, and as noted above,
the key measurement in these experiments is the kinetic energy
released as a consequence of Coulomb repulsion between the two
like-charged fragments as they separate. Due to a combination of
high kinetic energy release and comparatively light mass, the peak
profiles recorded from the fragmentation of molecular dications
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FIG. 2. An example of a kinetic energy spectrum recorded following the Coulomb
fission of [(H2O)37]2+ [n is the number of water molecules in the smallest ion
fragment (H2O)nOH+].

show the presence of a sequence of pronounced dish-shaped peak
profiles.16,17 These arise from the preferential transmission of frag-
ment ions that are either strongly forward or backward scattered
with respect to the laboratory frame of reference. Whilst it is
possible to extract a value for the average kinetic energy release
(KER) from the full width at half maximum (FWHM) for each
peak assigned to a particular fission process,40 this approach does
have limitations. It relies heavily on the quality of the experimen-
tal data and is very sensitive to how accurately the width (ΔE) of
a profile can be measured (KER is ∝ΔE2);40 hence, poor signal-
to-noise levels on the edges of peaks can lead to errors in KER
values.

To improve the accuracy of energy release measurements,
a method for calculating peak profiles proposed by Beynon and
co-workers41,42 has been adopted in the form of a Monte Carlo
simulation.17 From random values for the kinetic energy release,

center-of-mass velocities for the fragments are calculated on the
assumption that, in the center of mass frame, the scattering of ions
is equally probable in all direction. These velocities are then trans-
formed to the laboratory-frame as two components, vz , which deter-
mines whether or not a fragment ion will pass through the final slit
on the mass spectrometer, and vxy, which determines how rapidly a
fragment ion will pass through the electrostatic analyzer and reach
the detector.18,41 Since the position in the flight tube where fission
occurs also influences the probability of an ion passing through the
final slit, it is assumed that ions have equal probability of fragment-
ing at all positions along 2ffr. A total of 106 simulations were run for
each set of conditions, and for those ions calculated to have reached
the detector, their center-of-mass kinetic energies were transformed
into a laboratory-frame peak profile. The simulation of peak pro-
files was found to be sensitive to two center-of-mass kinetic energy
variables: the minimum kinetic energy, Emin, which primarily con-
tributes to the center of a profile, and the maximum allowed kinetic
energy, Emax, which determines the width of the profile and the sepa-
ration between the wings. The results shown in Fig. 2 were all calcu-
lated using Emin = 0.7 eV together with a uniform spread in kinetic
energies up to Emax = 1.1 eV; from visual inspection, these values
are probably accurate to ±0.05 eV. The calculated average kinetic
energy (KER) is 0.89 eV. The most significant results from these
experiments are the values determined for Emax, as these represent
the maximum repulsion energy experienced by singly charged frag-
ments as they separate. In terms of the calculated interaction ener-
gies, Emax should be less than or equal to the height of a Coulomb
barrier. A value for Emax less than the height of a particular barrier is
possible if some of the kinetic energy is assumed to have been dissi-
pated into internal energy as the fragments separate. Such behavior
would result in the evaporation of single molecules and further scat-
ter the fragment ions, leading to an in-filling of the dish shaped peak
profiles.

A series of measurements have been taken for six separate
molecular systems, and these fragmentation processes are sum-
marized in Table I. In each case, a single fragmentation step is
taken to be representative of all the profiles measured for a par-
ticular, mass-selected molecular dication. Although there are subtle

TABLE I. Fragmentation processes considered in this study.

No. Molecular cluster Process

1 Benzene [(C6H6)24]
2+
→ (C6H6)15

+ + (C6H6)9
+

2 Benzene [(C6H6)22]
2+
→ (C6H6)15

+ + (C6H6)7
+

3 Tetrahydrofuran (THF) [(C4H8O)25]
2+
→ (C4H8O)15

+ + (C4H8)10
+

4 Pyridine [(C5H5N)18]
2+
→ (C5H5N)12

+ + (C5H5N)6
+

5 Pyridine [(C5H5N)17]
2+
→ (C5H5N)11

+ + (C5H5N)6
+

6 Ammonia [(NH3)53]
2+
→ (NH3)40H+ + (NH3)12NH2

+

7 Ammonia [(NH3)53]
2+
→ (NH3)38H+ + (NH3)13NH2

+

8 Ammonia [(NH3)53H2]
2+
→ (NH3)41H+ + (NH3)12H+

9 Acetonitrile [(CH3CN)31]
2+
→ (CH3CN)25

+ + (CH3CN)6
+

10 Acetonitrile [(CH3CN)29]
2+
→ (CH3CN)23

+ + (CH3CN)6
+

11 Water [(H2O)37]
2+
→ (H2O)27H+ + (H2O)9OH+

12 Water [(H2O)38]
2+
→ (H2O)25H+ + (H2O)12OH+
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TABLE II. Center-of-mass kinetic energy data extracted from simulations of peak profiles similar to those shown in Fig. 2: Emin and Emax are, respectively, the minimum and
maximum kinetic energies used in the simulations; also given are the derived average values of kinetic energy release, KER. The calculated maximum of the electrostatic
interaction energy, Umax, is presented in column I-V for variants I-V of the surface free charge distribution or localization. Umax for the uniformly distributed free charge is included
in column I. If Umax is reached at the shortest interparticle separation distance, its value is highlighted in bold.

Umax (eV)

No. Emin (eV) Emax (eV) KER (eV) a1 (nm) a2 (nm) ε1 = ε2 I II III IV V

1 0.60 0.90 0.74 0.81 0.68 2.28 0.917 0.572 0.715 47.507 0.832
2 0.60 0.90 0.74 0.81 0.63 2.28 0.946 0.591 0.718 47.586 0.892
3 0.50 1.00 0.73 0.78 0.68 7.58 0.893 0.728 0.779 7.233 0.849
4 0.60 0.90 0.74 0.73 0.58 12.40 0.973 0.852 0.865 3.640 0.976
5 0.60 0.90 0.74 0.71 0.58 12.40 0.992 0.868 0.886 3.662 0.985
6 0.60 1.00 0.79 0.73 0.50 25.00 0.990 0.925 0.913 1.767 1.052
7 0.60 1.00 0.79 0.71 0.51 25.00 1.011 0.944 0.932 1.787 1.057
8 0.50 1.00 0.73 0.74 0.50 25.00 0.978 0.914 0.902 1.755 1.045
9 0.50 1.00 0.73 0.80 0.50 37.50 0.905 0.865 0.854 1.283 0.980
10 0.50 1.00 0.73 0.78 0.50 37.50 0.926 0.885 0.874 1.307 0.996
11 0.70 1.10 0.89 0.57 0.41 80.37 1.241 1.214 1.203 1.364 1.283
12 0.70 1.10 0.89 0.56 0.45 80.37 1.235 1.207 1.199 1.355 1.255

differences between profiles, the accuracy of both the measurements
and the simulations do not warrant further detail. For several exam-
ples, kinetic energy data for the same molecular system have been
recorded using measurements undertaken at two ion source poten-
tials, 5 kV and either 6 or 7 kV, and in each case, the peak profiles
could be accurately simulated using the Emin and Emax information
given in Table II.

IV. NUMERICAL RESULTS, COMPARISON WITH
EXPERIMENT, AND DISCUSSION

Table II presents experimental data from measurements on
the kinetic energy associated with Coulomb fission of doubly ion-
ized clusters, together with computational predictions for the cor-
responding electrostatic interaction energy barriers. Also shown
are the dielectric permittivities of the fluids forming the molec-
ular clusters and the sizes of the fragments into which the clus-
ters decay. The latter have been determined from the masses and
densities of the fluids concerned. Pairs of particles are subse-
quently identified by the numbers given in the first column of
Table I.

The reduced electrostatic interaction force between two parti-
cles has been calculated as a function of surface-to-surface separa-
tion and has been scaled by the Coulomb interaction force between
two point charges located at the center-to-center interparticle dis-
tance R. Five variants are considered that differ in the type and
location of the surface free charge: variant I with the homogeneous
distribution of surface charge and variants II-V with the δ-charges
located along the z-axis, as shown in Fig. 3.

Figures 4(a)–4(d) show the reduced electrostatic force cal-
culated, with reference to Table I, for pairs of charged particles
involved in the following fragmentation processes 1 (benzene),
9 (acetonitrile), 11 (water), and 12 (water). These cases differ
in the dielectric permittivities of the particles (the corresponding

liquids) and the sizes of fragmented pairs. Note that in the case of
a uniform distribution of surface charge (variant I), no attraction
between fragments is observed at all surface-to-surface separation
distances if the fragments have low dielectric permittivities, such as
benzene [see Fig. 4(a)] and/or the fragments are not too dissimilar
in size, as in process 12 [see Fig. 4(d)]. For variant I, at very short

FIG. 3. Four considered cases of the δ-charge location as defined by the polar
angles θ10 and θ20. Variant II: θ10 = 0 and θ20 = π; variant III: θ10 = θ20 = 0; variant
IV: θ10 = π and θ20 = 0; variant V: θ10 = θ20 = π.
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FIG. 4. The reduced electrostatic force as a function of the surface-to-surface separation calculated for the pair of charged particles involved in the fragmentation: (a) process
1 for the [(C6H6)24]2+ benzene cluster; (b) process 9 for the [(CH3CN)31]2+ acetonitrile cluster; (c) process 11 for the [(H2O)37]2+ water cluster; and (d) process 12 for
the [(H2O)38]2+ cluster, as shown in Table I. The calculated force is divided by the corresponding Coulomb interaction force between two point charges. The curves are
labeled by the variant number of the free charge distribution.

separation distances of L ≈ 10−2 nm (L = R − a1 − a2), the attrac-
tion between fragments increases with the increase in the ratio of
fragment radii a1/a2. The comparison of Figs. 4(b) and 4(c) shows
the stronger attraction in process 9 (a1/a2 = 1.60) than in process 11
(a1/a2 = 1.39).

It was found in Ref. 20 that generally the dependence of
the interaction force on the charges and radii of particles can be
described by the following formula:

Fz = ε
q1q2

a1a2
f(

q1

q2
,
a1

a2
,
L2

a1a2
,
ε1

ε
,
ε2

ε
), (71)

where f is an unknown function of these arguments, which varies
from 1 for large separation distances, L, to 0 at the maximum point
of the interaction potential. According to this formula, for a pair
of identical molecules with constant charges, the interaction force
increases, at large separations, if the radius of one particle (a2) is

decreased whilst keeping the radius of another particle (a1) constant.
However, at short separations, the increase in the ratio of particle
radii leads to stronger attractive charge-induced polarization forces,
thus making the effect of particles sizes on the interaction energy
barrier difficult to predict. These considerations are supported by
the data presented in Table II, showing that with an increase in the
ratio of particle radii, a1/a2, the height of the barrier (the value of
Umax) decreases in pairs 4 and 5, 6 and 8, and 9 and 10 but goes up
in pairs 1 and 2, and 11 and 12 (note that in the latter pair both radii
are changed).

If the point charges located on the surfaces face one another
(variant IV), all pairs experience repulsion. If the point charges are
located on opposite sides (variant II), the interaction at very short
distances is at its weakest and, for sufficiently large values of the
dielectric permittivity, the interaction force is very close in value to
the case of a uniform distribution of surface charge [Figs. 4(b)–4(d)].
For an arrangement of δ-point charges localized on the same side of
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the particles (either on the right as in variant III or on the left as in
variant V), a repulsive barrier becomes attractive for all pairs at a
short separation.

For pairs of particles involved in fragmentation processes 1
(benzene) and 9 (acetonitrile), the dependence of the electrostatic
interaction energy on the surface-to-surface separation is shown in
Fig. 5, and values for the Coulomb barriers (Umax) are summarized
in Table II. If the electrostatic interaction energy passes through
a maximum as the separation distance decreases (as, for example,
in variants III and V), its value is shown in Table II in normal
font; however, if the maximum value for the interaction energy
is reached at the shortest separation distance, it is highlighted in
bold.

To establish why there is a switch in electrostatic behavior from
repulsion to attraction in particles carrying the same sign of charge,
we consider the distribution of total surface charge at short separa-
tion distances L. Figure 6 presents the case for a uniform distribution
of free surface charge at L = 10−1 nm for pairs of particles involved
in fragmentation processes 1 and 9. It can clearly be seen that for
the charged clusters involved in process 1 (benzene, low dielectric
constant of ε = 2.28), the density of the total surface charge is pos-
itive at all angles (i.e., everywhere on the surface of the fragments)
such that for this pair, attraction is not observed at any of the sepa-
ration distances under consideration. However, for the pair involved
in process 9 (acetonitrile, ε = 37.5), a significant fraction of negative
total surface charge is accumulated on the larger particle in proxim-
ity to the second particle. It is the interaction between this negative
charge and the neighboring particle, which has positive total charge
density everywhere on its surface, that leads to attraction between
the cationic fragments.

For cases where each particle has a δ-like positive point free
charge, the distributions of total surface charge at L = 10−1 nm for
fragmentation processes 1 and 9 for variants II and IV are shown
in Fig. 7 and for variants III and V are shown in Fig. 8. From these
plots, the following interesting observations can be made.

FIG. 6. The total surface charge density as a function of the polar angle θ1 or θ2
for the two particles located at L = 0.1 nm and having the uniformly distributed free
surface charge.

● In variant II, the surface point charges are furthest apart,
and for low values of ε1 and ε2, the sign of the total surface
charge is positive at all angles; therefore, in Fig. 4(a), we do
not observe any attraction. If the interacting particles have
high values of ε1 and ε2, negative charge is acquired on that
part of the surface of the larger particle that is closest to the
second particle; therefore, in Fig. 4(b), we observe attraction
at short separation distances.

● In variant IV, the positive point charges face one another
and no attraction is observed for any of the pairs, despite
the fact that near the point charges, there exists an area of
induced negative charge. This more delocalized region of
negative charge resides at a greater distance from the point
charge of the neighboring particle than the corresponding

FIG. 5. The electrostatic energy as a function of the surface-to-surface separation calculated for the pair of charged particles involved in the fragmentation: (a) process 1 for
the [(C6H6)24]2+ benzene cluster and (b) process 9 for the [(CH3CN)31]2+ acetonitrile cluster. The curves are labeled by the variant number of the free charge distribution.
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FIG. 7. The total surface charge density as a function of the polar angle θ1 or θ2 for the two particles separated by L = 0.1 nm shown for the case when each particle has
a δ-like positive point free charge located at θ10 = 0 and θ20 = π, respectively (variant II), and at θ10 = π and θ20 = 0 (variant IV): (a) fragmentation process 1 (benzene,
ε = 2.28) and (b) fragmentation process 9 (acetonitrile, ε = 37.5).

point charge, and the overall effect is that the negative charge
only slightly weakens any interparticle repulsion. This effect
leads to the appearance of a clearly defined minimum in
the dependence of the electrostatic force on a separation
distance L for high values of ε1 and ε2 [Figs. 4(b)–4(d)].
Note that in fragmentation process 9, the total charge on the
smaller particle always remains positive.

● For the case of point charges facing the same direction, to
the right (variant III) or to the left (variant V), there is for
all pairs a strong attraction at short distances. Here, nega-
tive charge can be induced on both particles, if the values

of ε1 and ε2 are sufficiently high. This is the case shown
in Fig. 8(b) for variant V, where the smaller particle lies
between the point charges, but it also applies when either
particle lies between the point charges.

● At the location of the point charge, an increase in the density
of total charge of the same sign as that of the point charge is
observed in almost all cases. The only exception is variant IV
where the point charges are at the shortest separation from
each other. In variant IV, if the dielectric permittivities of the
interacting particles are small, the sign of the total charge (at
the location of the point charge) is opposite to the sign of the

FIG. 8. The total surface charge density as a function of the polar angle θ1 or θ2 for the two particles separated by L = 0.1 nm shown for the case when each particle has
a δ-like positive point free charge located at θ10 = θ20 = 0 (variant III) and θ10 = θ20 = π (variant V): (a) fragmentation process 1 (benzene, ε = 2.28) and (b) fragmentation
process 9 (acetonitrile, ε = 37.5).
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FIG. 9. The total surface charge density on the larger particle (a) and the smaller particle (b) as a function of the polar angle θ1 or θ2 and the surface-to-surface separation
distance L for fragmentation process 9 (acetonitrile, ε = 37.5). Free charge is uniformly distributed on the surface of each particle.

point charge for both particles; if the dielectric permittivities
are large, this only occurs for the particle with a larger radius
[see Fig. 7(b)].

The latter statement refers to a rather unusual and not self-
evident circumstance, which we will now consider in further detail.
We calculate the angular distribution of the total surface charge for
different values of interparticle separation, L, as shown in Figs. 9–11.
For a uniform distribution of surface free charge, the angular dis-
tribution of the total charge as a function of interparticle distance
(Fig. 9) is well known. We only note that on the smaller particle,
in the region closest to the neighboring particle, an increase in the

density of the total charge of the same sign as the point charge is
observed [Fig. 9(b)].

Figures 10 and 11 show that at the location of the point charge,
an increase in the density of the total surface charge of the same sign
persists even at a large interparticle separation where their mutual
influence is negligible. Consider the case of a single particle contain-
ing a point charge on its surface. From Eq. (C9) in the limit ofR→ a1,
the total charge distribution on a sphere in the case of δ-localized
charge is given by

σt,δ =
q
εa2

1

∞

∑
n=0

n(2n + 1)(ε − ε1)

nε1 + (n + 1)ε
Pn(cos θ), (72)

FIG. 10. The total surface charge density on the larger particle (a) and the smaller particle (b) as a function of the polar angle θ1 or θ2 and the surface-to-surface separation
distance L for fragmentation process 1 (benzene, ε = 2.28). Each particle has a δ-like positive point free charge located at θ10 = θ20 = 0 (variant III).
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FIG. 11. The total surface charge density on the larger particle (a) and the smaller particle (b) as a function of the polar angle θ1 or θ2 and the surface-to-surface separation
distance L for fragmentation process 9 (acetonitrile, ε = 37.5). Each particle has a δ-like positive point free charge located at θ10 = θ20 = 0 (variant III).

where θ is the polar angle in spherical coordinates with a pole at
the center of the dielectric sphere and an axis directed to the point
charge, i.e., the point charge is located at θ0 = 0. Using Eq. (C1), we
transform Eq. (72) to

σt,δ =
q
a2

1

ε1 − ε
ε1 + ε

∞

∑
n=0

2n + 1
nε1 + (n + 1)ε

Pn(cos θ)

−
2q
εa2

1

ε1 − ε
ε1 + ε

δ(cos θ0 − cos θ). (73)

We see from Eq. (73) that in the limit of θ→ θ0 [note that for θ0 ≠ θ,
δ(cos θ0 − cos θ) = 0 and Pn(cos θ) > 0 for all n at θ < π/2], the
sign of σt ,δ is the same as the sign of q. This explains the appearance
of an additional contribution to the total charge that has the same
sign as the point charge close by. From the last term on the r.h.s.
of this expression, it is also evident that the environment reacts to
the presence of the surface point charge such that the “height” of the
δ-function decreases.

V. CONCLUDING REMARKS
A general solution to the problem of calculating the elec-

trostatic interaction between particles with inhomogeneous distri-
butions of free surface charge has been presented and compared
with the more established case of a uniform distribution of free
surface charge. Point charges on each of the particles have been
described by a δ-function of angular variables, and electrostatic
energy barriers have been calculated over the range of particle-
particle distances, 10−2

≤ L ≤ 103 nm, regions where the effects of
induced interactions are found to be at their greatest. When com-
pared with results for a uniform distribution of charge, the cal-
culations reported in Table II show that the exact location of the
point charge has a marked influence on the value of any Coulomb

barrier in the electrostatic energy. These barriers can affect the
behavior of charged particles in two ways: first, there is the coales-
cence of charged particles of which the particle orientations offer
the most facile pathway to facilitate that process. A second aspect
to the work concerns the fragmentation of multiply charged parti-
cles, and here the barrier will contribute to the process of charge
separation. In this work, we have addressed the latter topic with
examples taken from the fragmentation of dication molecular clus-
ters. As has been discussed in earlier publications on the fragmen-
tation of dication clusters,16–18 there are other contributions to the
energy barrier experienced by a dication at the onset to fragmen-
tation, and these will come from the breaking of physical and/or
chemical bonds, which in the examples given will most probably
take the form of either van der Waals or hydrogen bond inter-
actions. The calculations discussed here are only concerned with
events taking place after these bonds have been broken and the indi-
vidual particles start to separate; at that point, they are subject to the
influence of a purely repulsive Coulomb interaction which, depend-
ing on how polarizable the particles are, can be moderated by the
effects of short-range, attractive charge-induced multipole interac-
tions.

Accurate experimental measurements of the Coulomb barrier
in the form of values for the kinetic energy released following charge
separation have been presented for six molecular dications. Table II
summarizes these data together with calculated values of the bar-
rier for different surface locations of the two point charges as the
particles separate (columns II-V). Also given are barriers calculated
for a uniform distribution of free surface charge. As noted earlier,
these calculated barrier heights are to be compared with experi-
mental results determined for Emax, which represent maxima in the
Coulomb energy as recorded from peak profiles of the type shown
in Fig. 2; the value of Emax should be less than or equal to Umax.
As can be seen from Table II, for weakly polarizable clusters com-
posed of either benzene or THF molecules, this latter requirement
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is most closely met with a uniform distribution of surface charge
(variant I). As ε increases in value, the point charge orientation θ10
= θ20 = π (variant V) becomes a realistic alternative, particularly
when the ±0.05 eV experimental error limit is taken into consid-
eration. However, for the most polar of the clusters (water), almost
any of the variants could be appropriate. One reason for the change
in behavior is that the charge could become localized in the form
of a proton or a similar charge carrier,43 and for at least two of the
systems, (H2O)2+

n and (NH3)2+
n , this is a distinct possibility.

If we examine what an inhomogeneous charge distribution
might mean for the outcome of particle-particle collisions, for exam-
ple when patchy colloidal particles coalesce,35 then under those
circumstances, pathways with the lowest energy barriers might be
expected to be more favorable. Using the data in Table II as an illus-
tration, it can again be seen that there are differences depending on
the dielectric constants of the materials involved. For low values of
ε, variant II offers the lowest Coulomb barrier to coalescence which,
bearing in mind that this figure is for the gas phase, will be of the
order of a few millielectronvolts when the dielectric constant of any
solvent is taken into consideration. Once the dielectric constant of
the particles has a value of 25 or more, there is, as before, little to
distinguish between barriers presented by a uniform charge distri-
bution and variants II, III, and V. What might then influence events
is the ability of the short-range attractive barrier to hold the particles
in place.

Central to any discussion of charge orientation is the time scale
over which competing events take place. For particles moving apart
following fragmentation, those events are going to be the rotational
period and the time taken for the particles to separate to a distance
where the Coulomb potential no longer has a significant influence.
Taking values for size, density, and kinetic energy that are repre-
sentative of the clusters given in Table II, the rotational period is
estimated to be about 10−10 s, and the time taken to separate to
a distance of 10 nm is approximately 10−11 s; thus, starting with a
particular charge orientation (any of variants II-V), this would not
be expected to change during the time taken for the particles to
separate.
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APPENDIX A: SYSTEM OF EQUATIONS DETERMINING
THE EXPANSION COEFFICIENTS OF THE
ELECTROSTATIC POTENTIAL

From potential continuity conditions (5), we express the coef-
ficients A±mℓ and B±mℓ in C±mℓ and D±mℓ . Then, using conditions (6)
and the properties of the associated Legendre functions,44 after sim-
ple algebra, we obtain the following equations for determining the
potential expansion coefficients:20

−A±mℓ yℓ−1 + C±mℓ yℓ − B
±m
ℓ yℓ+1 = F

±m
ℓ ,

ℓ = 0, 1, . . .∞, m = 0, 1, . . . ℓ,
(A1)

where

yℓ = (C
±m
ℓ ,D±mℓ )

T ,

A±mℓ = (ℓ −m)
⎛

⎝

(ε1 − ε)e−(ℓ−
1
2 )ξ1 (ε1 + ε)e(ℓ−

1
2 )ξ1

(ε2 + ε)e(ℓ−
1
2 )ξ2 (ε2 − ε)e−(ℓ−

1
2 )ξ2

⎞

⎠
, (A2)

(C±mℓ )11
= (ε − ε1)[sinh ξ1 − (2ℓ + 1) cosh ξ1]e−(ℓ+ 1

2 )ξ1 ,

(C±mℓ )12
= [(ε − ε1) sinh ξ1 + (2ℓ + 1)(ε + ε1) cosh ξ1]e(ℓ+ 1

2 )ξ1 ,
(A3)

(C±mℓ )21
= [(ε − ε2) sinh ξ2 + (2ℓ + 1)(ε + ε2) cosh ξ2]e(ℓ+ 1

2 )ξ2 ,

(C±mℓ )22
= (ε − ε2)[sinh ξ2 − (2ℓ + 1) cosh ξ2]e−(ℓ+ 1

2 )ξ2 ,

B±mℓ = (ℓ + m + 1)
⎛

⎝

(ε1 − ε)e−(ℓ+ 3
2 )ξ1 (ε1 + ε)e(ℓ+ 3

2 )ξ1

(ε2 + ε)e(ℓ+ 3
2 )ξ2 (ε2 − ε)e−(ℓ+ 3

2 )ξ2

⎞

⎠
, (A4)

and

F±mℓ =
⎛

⎝

8πaσ̃ ±m1,ℓ e
−(ℓ+ 1

2 )ξ1

8πaσ̃ ±m2,ℓ e
−(ℓ+ 1

2 )ξ2

⎞

⎠
. (A5)

This series of equations is a system with a block three-diagonal
matrix.

Taking into account the fact that for ℓ = m from (A2) we have
A±mℓ = 0 and putting yLmax = 0 for a sufficiently large ℓ = Lmax,
we will reduce the system of equations (A1) to the following form
(N = Lmax − 1):

C±mm ym − B
±m
m ym+1 = F

±m
m ,

−A±mℓ yℓ−1 + C±mℓ yℓ − B
±m
ℓ yℓ+1 = F

±m
ℓ ,

−A±mN yN−1 + C±mN yN = F
±m
N ,

ℓ = m + 1,m + 2, . . . ,N − 1.

(A6)

Equation (A6) are solved by using the matrix sweep method47 for
each given value m = 0, 1, 2, . . ., N. The algorithm of the matrix
sweep method has the form47 (we omit the “±m” superscripts; the
“−1” superscript denotes the inverse matrix)

αm+1 = C−1
m Bm, αℓ+1 = (Cℓ − Aℓαℓ)−1Bℓ,

ℓ = m + 1,m + 2, . . . ,N − 1;

βm+1 = C−1
m Fm, βℓ+1 = (Cℓ − Aℓαℓ)−1

(Aℓβℓ + Fℓ),
ℓ = m + 1,m + 2, . . . ,N;

yN = βN+1, yℓ = αℓ+1yℓ+1 + βℓ+1,
ℓ = N − 1,N − 2, . . . ,m + 1,m.

(A7)

When m = N, we have only one equation and the solution in this case
is yN = C

−1
N FN . When m = N − 1, we have two equations:

C±mN−1yN−1 − B
±m
N−1yN = F

±m
N−1,

−A±mN yN−1 + C±mN yN = F
±m
N ,

(A8)

and the solution in this case will be

αN = C−1
N−1BN−1, βN = C−1

N−1FN−1,

βN+1 = (CN − ANαN)−1
(ANβN + FN),

yN = βN+1, yN−1 = αNyN + βN .

(A9)
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APPENDIX B: ALTERNATIVE METHOD
OF REPRESENTING THE POINT CHARGES
ON THE SURFACE OF PARTICLES

Let us consider the case of point charges located on the surfaces
of spheres at points with coordinates θi0 and φi0,

σi(θi,φ) = σi0δ(cos θi − cos θi0)δ(φ − φi0). (B1)

The value of σi0 is determined by an integral over the surface of the
ith particle (μi = cos θi),

qi =
2π

∫

0

1

∫

−1

σi(μi,φ)a2
i dμidφ = a

2
i σi0. (B2)

From Eqs. (B1) and (B2), we have

σi(θi,φ) =
qi
a2
i
δ(cos θi − cos θi0)δ(φ − φi0). (B3)

Using the relation (C2) for the expansion coefficients of Eq. (7) in
spherical coordinates with a pole at the center of the ith particle, we
find

(
σmi,n
σ−mi,n
) =

qi
a2
i

2n + 1
2π(1 + δm0)

(n −m)!
(n + m)!

Pm
n (cos θi0)(

cosmφi0
sinmφi0

). (B4)

Then, from (9) and (10), we find expansion coefficients, which are
already represented in the bispherical coordinate system.

In the case of an axially symmetric arrangement of point
charges, we can proceed from the expression

σi(θi) = σi0δ(cos θi − cos θi0), (B5)

and then σi0 are defined by expressions

qi =
2π

∫

0

1

∫

−1

σi(μi)a2
i dμidφ = 2πa2

i σi0, (B6)

and we obtain

σi(θi) =
qi

2πa2
i
δ(cos θi − cos θi0). (B7)

Finally, we use Eq. (C1), and for the expansion coefficients of
Eq. (7) in spherical coordinates with a pole at the center of the ith
particle, we obtain

σi,n =
qi

4πa2
i
(2n + 1)Pn(cos θi0). (B8)

Note that this relation can be obtained from Eq. (B4) by assuming
m = 0. Furthermore, we find the required expansion coefficients in
the bispherical coordinate system from Eqs. (9) and (13).

APPENDIX C: SOME RELATIONSHIPS USED
IN THE PAPER

In this paper, we use various relationships from the handbooks
cited below. Relationship (1.17.22):46

δ(x − y) =
∞

∑
ℓ=0
(ℓ + 1

2)Pℓ(x)Pℓ(y). (C1)

Here and below, all absolute values of the arguments of Legendre
polynomials are less than or equal to one. Relationship (1.17.25):46

δ(x1 − x2)δ(φ1 − φ2) =
∞

∑
ℓ=0

ℓ

∑
m=0

2ℓ + 1
2π(1 + δm0)

(ℓ −m)!
(ℓ + m)!

×Pm
ℓ (x1)Pm

ℓ (x2) cosm(φ1 − φ2). (C2)

Relationship (14.18.6):46

(x − y)
n

∑
ℓ=0
(2ℓ + 1)Pℓ(x)Pℓ(y)

= (n + 1)[Pn+1(x)Pn(y) − Pn(x)Pn+1(y)]. (C3)

Asymptotic expansion (8.10.7):48

Pm
ℓ (cos θ) =

Γ(ℓ + m + 1)
Γ(ℓ + 3/2)

(
1
2
π sin θ)

−1/2

× cos[(ℓ +
1
2
)θ −

π
4

+
mπ
2
] + O(

1
ℓ
). (C4)

Integrals of Legendre functions:44,45

1

∫

−1

Pm
n (x)P

m
ℓ (x)dx =

2
2n + 1

(n + m)!
(n −m)!

δnl (C5)

and
2π

∫
0

cos2
(mφ)dφ = π(1 + δm0),

2π

∫
0

sin2
(mφ)dφ = π(1 − δm0),

m = 0, 1, 2, . . . . (C6)

A solution to the electrostatic problem for a system consisting
of an uncharged dielectric ball and a point charge is defined by the
equations (see Ref. 38, task no. 157)

ϕ =
q
εR

∞

∑
n=0

2n + 1
nε1 + (n + 1)ε

(
r
R
)
n
Pn(cos θ), r < a1, (C7)

ϕ =
q
εR

∞

∑
n=0
[

n(ε − ε1)

nε1 + (n + 1)ε
(
a1

R
)
n
(
a1

r
)
n+1

+
q
ε

∞

∑
n=0
(
r
R
)
n
]Pn(cos θ), R > r > a1. (C8)

Here, a1 is the ball’s radius, ε1 is the ball’s dielectric permittivity, q is
the point charge, ε is the dielectric permittivity of the medium, R is
the distance between the center of the ball and the point charge, and
r and θ are the radius and polar angle in spherical coordinates with a
pole at the center of the ball and an axes directed to the point charge.
For the total charge distribution on the ball from Eq. (31), we find

σ1,t =
q
εR2

∞

∑
n=0
(
a1

R
)
n−1 n(2n + 1)(ε − ε1)

nε1 + (n + 1)ε
Pn(cos θ). (C9)
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