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ABSTRACT
Theory is developed to address the significant problem of electrostatic interactions between charged polarizable dielectric spheroids. The
electrostatic force is defined by particle dimensions and charge, dielectric constants of the interacting particles and medium, and the inter-
particle separation distance; and it is expressed in the form of an integral over the particle surface. The switching behavior between like
charge repulsion and attraction is demonstrated as depending on the ratio of the major and minor axes of spheroids. When the major
and minor axes are equal, the theory yields a solution equivalent to that obtained for spherical particles. Limiting cases are presented for
nonpolarizable spheroids, which describe the electrostatic behavior of charged rods, discs, and point charges. The developed theory repre-
sents an important step toward comprehensive understanding of direct interactions and mechanisms of electrostatically driven self-assembly
processes.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5129756., s

I. INTRODUCTION

Direct interactions and electrostatic forces often serve as a basis
for novel self-assembly mechanisms, where the interacting particles
combine to form larger ordered structures, typically when subjected
to an external stimulus (solvent polarity, pH factor, irradiation, and
temperature) and driven by thermodynamic and other constraints.
Significant advances1 have been reported on designing nanopar-
ticles with specific shapes, morphological features, and interfaces
that result in directional interactions in order to achieve the desired
extended structures and their functionalities. Breakthroughs in par-
ticle synthesis led to the production of particles in the shape of rods,2

cones,3 and discs, typically containing silica, metals, metal oxides,4–6

and polymers,7 with high yield and size/shape selectivity; these
include some elegant examples of rods and ellipsoids of Au-Pt,8

CdSe,9 gold,10 gibbsite,6 and polymer latex.11 These new approaches
to particle synthesis have offered a diverse spectrum of particle
anisotropy and clustering behavior, including the formation of low
symmetry clusters,12 spherical self-assembled objects,13 chain-like
structures,13 and bundling.14 Equilateral polygonal platelets have

been lithographically fabricated to demonstrate that colloidal
interactions and self-assembly in anisotropic nematic fluids can
be effectively tailored through the control over the particles’
shapes.15

Some additional chemical and biological application areas
reliant on the accurate description of electrostatic interactions
between objects with spheroidal, or near spheroidal, shapes are
fullerenes of higher order (e.g., C70),16 complex polyoxometa-
lates (POMs) (e.g., Preyssler-type POMs),17 elliptocytes (abnor-
mally shaped red blood cells),18 and some proteins.19,20 More-
over, nonsphericity affects the self-assembly of many other types
of nanoparticles,21 the formation photonic and liquid crystals,22,23

and light scattering.24 Therefore, it is crucial to understand the
correlation between the shapes of building blocks, the electrostatic
interactions between them, and the morphology of the resulting
structures.25 For example, proteins having different amino acid
sequences can fold into very similar shapes and subsequently self-
assemble into oligomers and other hierarchical structures, such
as fibers, closed shells, or tubes.26,27 Further examples are the
multicellular tumor spheroid (MCTS) models for mimicking the
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microenvironment of tissues.28 These experiments have shown
the effect of surface charge on nanoparticle penetration into a
MCTS.

Directed self-assembly of polarizable ellipsoids in an external
electric field has been computationally studied using Monte Carlo
simulations of a two point-charge model of polarizable prolate ellip-
soids.29 However, there have not been corresponding developments
toward a general methodology for treating electrostatic interac-
tions between nonspherical particles. Exact solutions to this problem
have only been presented for a single uniformly charged spheroidal
shell30 and where the image charge method has been used to treat
conducting ellipsoidal particles.31

In this paper, an analytical theory of electrostatic interactions
between spheroidal particles has been developed, building on pre-
vious work,32–36 where analytical expressions have been given for
the electrostatic force between charged, dielectric sphere—sphere,32

and sphere—planar surface systems.33 In these electrostatic mod-
els, the mutual effect of charge is obtained from Gauss’s law,
which couples uniquely the electrostatic potential with the distri-
bution and magnitude of electric charge on the surfaces of the
interacting objects. The accumulated surface charge is integrated
to obtain an analytical expression for the electrostatic force act-
ing on interacting objects at arbitrary separation. The result is a
simple series expression for the force that can be efficiently gen-
eralized for studying interactions not only in vacuum32,33 but also
in solution34 and in electrolytes.35,36 The solution has been evalu-
ated by comparison with existing solutions for a range of simple
geometries including a point charge corresponding to a nonpolar-
izable sphere, a charged rod corresponding to a nonpolarizable pro-
late spheroid, and a disc corresponding to a nonpolarizable oblate
spheroid.

II. METHODOLOGY
A. Geometry of the problem and expansion
of the electrostatic potential

The problem to be addressed involves two dielectric spheroidal
particles, denoted as i = 1, 2 in Fig. 1, of arbitrary size and defined by
semiaxes ai and ci, permittivity ki, and carrying an arbitrary charge
Qi in a surrounding dielectric medium of permittivity km. The par-
ticles are placed on the same axis of symmetry z at the distance
R between their centers. The problem is solved in spherical coor-
dinate systems with an origin at the center of the spheroids. The

FIG. 1. A geometric representation of two interacting dissimilar spheroids. Dielec-
tric constants, permanent charges, and the semiaxes for spheroids 1 and 2 are
denoted as k1, Q1, a1, and c1 and k2, Q2, a2, and c2.

distribution of electric potential inside and outside the spheroids is
described by the Laplace equation

ΔΦ = 0, (1)

which is supplemented by two boundary conditions. The first
assumes continuity of the electric potential on the surface of the ith
spheroid,

Φi,in∣ri=ρi(μi) = (Φi,out + Φj,out)∣ri=ρi(μi), (2)

where Φi ,in is the potential inside the spheroid, Φi ,out + Φj ,out is the
potential outside the spheroid with contributions from both the ith
and jth spheroids, j = 3 − i, ri is the radial coordinate in the spherical
coordinate system with the pole in the center of the ith particle, and
ρi(μi) is the spheroid surface radial coordinate in the spherical frame
system,

ρi(μi) = (
1 − μ2

i

a2
i

+
μ2
i

c2
i
)
−1/2

,

where μi = cos θi, θi is a polar angle. The second boundary condition
states that the normal component of the dielectric displacement field
is discontinuous due to the presence of a free charge on the surface
of a spheroid,

ki(ni ⋅∇Φi,in)∣ri=ρi(μi) − km [ni ⋅ ∇(Φi,out + Φj,out)]∣ri=ρi(μi) =
σi(μi)
ε0

.

(3)

Here, ni is the unit normal vector on the surface of the ith spheroid,
σi(μi) is the surface charge density of the ith spheroid, and ε0 is the
permittivity of vacuum.

The electrostatic potential inside the ith spheroid, which satis-
fies the Laplace equation (1) can be expanded in terms of Legendre
polynomials Pn(μi),37

Φi,in =
∞

∑
n=0

An,irni Pn(μi). (4)

The potential outside each spheroid that satisfies Eq. (1) and van-
ishes at infinity takes the form37

Φi,out =
∞

∑
n=0

Bn,ir−n−1
i Pn(μi). (5)

In order to apply boundary conditions (2) and (3) and determine the
expansion coefficients An ,i and Bn ,i, it is necessary to re-expand the
potential (5) and use only one set of spherical coordinates for each
spheroid,38

Φj,out =
∞

∑
n=0

∞

∑
m=0

Bm,j
(m + n)!
m!n!

R−m−n−1rni Pn(μi). (6)

The corresponding derivatives of the electrostatic potential are

J. Chem. Phys. 152, 024121 (2020); doi: 10.1063/1.5129756 152, 024121-2

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

∂Φi,in

∂ri
=
∞

∑
n=0

An,inrn−1
i Pn(μi),

∂Φi,out

∂ri
=
∞

∑
n=0

Bn,i(−n − 1)r−n−2
i Pn(μi),

∂Φj,out

∂ri
=
∞

∑
n=0

∞

∑
m=0

Bm,jn
(m + n)!
m!n!

R−m−n−1rn−1
i Pn(μi),

∂Φi,in

∂μi
= 1

1 − μ2
i

∞

∑
n=0

An,i(n + 1)rni [μiPn(μi) − Pn+1(μi)],

∂Φi,out

∂μi
=
∞

∑
n=0

Bn,ir−2n−1
i (n + 1)rni [μiPn(μi) − Pn+1(μi)],

∂Φj,out

∂μi
=
∞

∑
n=0

∞

∑
m=0

Bm,j
(m + n)!
m!n!

R−m−n−1(n + 1)rni [μiPn(μi)−Pn+1(μi)].

(7)

B. The case of the isolated spheroid
The surface charge distribution σi(μi) is found from the

assumption that the surface of an isolated spheroid is equipotential,

Φout∣r=ρ(μ) = ϕ0, (8)

where the surface potential ϕ0 is described as39,40

ϕ0 =
Q

4πkmε0

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
√

a2−c2
arctan

√
a2

c2 − 1, a > c;
1

2
√

c2−a2
ln c+

√

c2−a2

c−
√

c2−a2
, c > a.

(9)

Using expansion (5) in (8) gives

∞

∑
n=0

B′nPn(μ)ρ−n−1(μ) = ϕ0, (10)

where B′n are constant coefficients corresponding to an isolated
spheroid. Expanding both parts of Eq. (10) in terms of Legendre
polynomials yields

∞

∑
n=0

βknB
′

n ≡ 2ϕ0δk,0, k = 0, 1, 2, . . . , (11)

where

βkn =
1

∫
−1

ρ−n−1(μ)Pn(μ)Pk(μ)dμ. (12)

The solution of the linear system (11) gives the expansion coeffi-
cients B′n ,i. Inside an isolated spheroid with an equipotential surface,
the electric field is zero; therefore, the second boundary condition,
(3), can be rewritten as

σ(μ) = −kmε0 (n ⋅ ∇Φout)∣r=ρ(μ). (13)

Using (5) and the expansion coefficients B′n ,i, the surface charge
distribution is given by

σ(μ) = kmε0

∞

∑
n=0

B′nρ
−n−2(μ)(n + 1)[(nr + nθμ)Pn(μ) − nθPn+1(μ)].

(14)

Here and thereafter, the components of the normal vector n = nr r̂ +
nθ
√

1 − μ2θ̂ on the surface of the spheroid are defined as

nr =
1√

1 + ( 1
a2 − 1

c2 )
2μ2(1 − μ2)ρ4

,

nθ =
( 1
a2 − 1

c2 )μρ2

√
1 + ( 1

a2 − 1
c2 )

2(1 − μ2)μ2ρ4
.

(15)

Note that Eq. (14) is expressed in a general form and can be applied
to any three dimensional shape with axial symmetry. In this paper,
it is tested against the known formula for the surface charge density
on an isolated spheroid with a uniformly distributed potential,39

σi(μi) =
Qi

4πa2cρi(μi)
(1 − μ2

i

a4
i

+
μ2
i

c4
i
)
−

1
2

. (16)

Figure 2 compares the numerical results obtained using Eq. (14) and
the analytical expression (16) for three different cases correspond-
ing to the aspect ratios of a:c = 1:1 (sphere), a:c = 3:4 (prolate), and
a:c = 4:3 (oblate). The deviation of the numerical results is within
0.1%, mainly in the charge deficient areas as compared to the distri-
bution of charge on the surface of a sphere, thus demonstrating the
reliability of the proposed method.

C. Two spheroids at a finite separation
If two spheroids are located at a finite distance apart, the

boundary condition (2) takes the following form:

∞

∑
n=0

An,iρni (μi)Pn(μi) =
∞

∑
n=0

Bn,iρ−n−1
i (μi)Pn(μi)+

∞

∑
n=0

∞

∑
m=0

Bm,j

× (m + n)!
m!n!

R−m−n−1ρni (μi)Pn(μi). (17)

Here, the electrostatic potential of the jth spheroid is re-expanded
in a spherical coordinate system with the origin at its center using
an addition theorem for Legendre polynomials.38 Multiplying both
sides of (17) by Pk(μi) and integrating over the limits −1 to 1 yield

∞

∑
n=0

αkn,iAn,i =
∞

∑
n=0

βkn,iBn,i +
∞

∑
n=0

∞

∑
m=0

αkn,i
(m + n)!
m!n!

R−m−n−1Bm,j,

(18)

where

αkn,i =
1

∫
−1

ρni (μi)Pn(μi)Pk(μi)dμi (19)

and βkn ,i is defined by Eq. (12). The second boundary condition (3)
expanded in terms of Legendre polynomials takes the form

∞

∑
k=0

CkPk(μi) =
∞

∑
k=0

DkPk(μi), (20)

where
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FIG. 2. Surface charge distribution on an isolated spheroid: analytical results using Eq. (16) are shown as black lines and numerical values obtained by Eq. (14) are shown
by circles (sphere), triangles (prolate), and squares (oblate). The embedded plots represent the relative deviation between the two approaches.

Ck =
2k + 1

2

1

∫
−1

{ki(ni ⋅ ∇Φi,in) − km

× [ni ⋅ ∇(Φi,out + Φj,out)]}∣
ri=ρi(μi)

Pk(μi)dμi, (21)

Dk =
2k + 1

2
Υk,

Υk =
1

∫
−1

σi(μi)Pk(μi)dμi.
(22)

Substitution of the derivatives (7) of the electrostatic potential into
Eq. (21) gives

Ck =
2k + 1

2
{ki

∞

∑
n=0

An,i[nΓ(3)kn,i − (n + 1)Γ(4)kn,i] + km

∞

∑
n=0

Bn,i(n + 1)

× [Γ(1)kn,i + Γ(2)kn,i] − km

∞

∑
n=0

∞

∑
m=0

Bm,j
(m + n)!
m!n!

R−m−n−1

× [nΓ(3)kn,i − (n + 1)Γ(4)kn,i]}, (23)

where the following notation has been introduced:

Γ(1)kn,i =
1

∫
−1

ρ−n−2
i (μi)nr,i(μi)Pn(μi)Pk(μi)dμi,

Γ(2)kn,i =
1

∫
−1

ρ−n−2
i (μi)nθ,i(μi)[μiPn(μi) − Pn+1(μi)]Pk(μi)dμi,

Γ(3)kn,i =
1

∫
−1

ρn−1
i (μi)nr,i(μi)Pn(μi)Pk(μi)dμi,

Γ(4)kn,i =
1

∫
−1

ρn−1
i (μi)nθ,i(μi)[μiPn(μi) − Pn+1(μi)]Pk(μi)dμi.

(24)

Similarly, substitution of Eq. (14) into Eq. (22) yields

Υk = km

∞

∑
n=0
(n + 1)B′n,i(Γ(1)kn,i + Γ(2)kn,i). (25)

Hence, Eq. (20) can be rewritten as

ki
nmax

∑
n=0

An,i[nΓ(3)kn,i − (n + 1)Γ(4)kn,i] + km

nmax

∑
n=0

Bn,i(n + 1)

× [Γ(1)kn,i + Γ(2)kn,i] − km

nmax

∑
l=0

n−nmax

∑
n=0

Bn,j[lΓ(3)kl,i − (l + 1)Γ(4)kl,i ]

× (l + n)!
l!n!

R−l−n−1 = Υk. (26)

Finally, combining Eqs. (18) and (26) gives the required set of linear
equations for the coefficients An ,i and Bn ,i,

∞

∑
n=0

αkn,iAn,i +
∞

∑
n=0

0 ⋅ An,j −
∞

∑
n=0

βkn,iBn,i −
∞

∑
n=0

γkn,iBn,j = 0,

∞

∑
n=0

Λkn,iAn,i +
∞

∑
n=0

0 ⋅ An,j +
∞

∑
n=0

Ωkn,iBn,i −
∞

∑
n=0

Θkn,iBn,j = Υk,i,
(27)

where i = 1, 2, j = 3 − i, k = 0, 1, 2, . . .,∞,

γkn,i ≡
nmax−n

∑
l=0

(l + n)!
l!n!

R−l−n−1αkl,i,

Λkn,i ≡ ki[nΓ(3)kn,i − (n + 1)Γ(4)kn,i],

Θkn,i ≡ km

nmax−n

∑
l=0
[lΓ(3)kl,i − (l + 1)Γ(4)kl,i ]

(l + n)!
l!n!

R−l−n−1,

Ωkn,i ≡ km(n + 1)[Γ(1)kn,i + Γ(2)kn,i],

Υk,i ≡
∞

∑
n=0

B′n,iΩkn,i.

(28)

D. Electrostatic force
The Maxwell stress tensor is used to calculate the electro-

static interaction force41 acting on spheroid i due to the presence
of spheroid j,
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Fi = ∮
Si

TindS, (29)

where

Tn = ε0km(EnE −
1
2
nE2) = ε0km[

1
2
(E2

n − E2
τ)n + EnEττ] (30)

is the normal component of the Maxwell stress tensor and
τ = −nθ

√
1 − μ2er +nreθ is the tangent unit vector. Here, the normal

component of the electric field is given by

En,i = −(ni ⋅ ∇(Φi,out + Φj,out))∣ri=ρi(μi)

=
∞

∑
n=0

Bn,i(n + 1)ρ−n−2
i (μi){Pn(μi)nr,i(μi)

+ [μiPn(μi) − Pn+1(μi)]nθ,i(μi)}

−
∞

∑
n=0

∞

∑
m=0

Bm,j
(m + n)!
m!n!

R−m−n−1ρn−1
i (μi)

×{nPn(μi)nr,i(μi) + (n + 1)[μiPn(μi)
−Pn+1(μi)]nθ,i(μi)}. (31)

The tangential component of the electric field is defined as

Eτ,i = −(τi ⋅ ∇(Φi,out + Φj,out))∣ri=ρi(μi)

=
√

1 − μ2
i

∞

∑
n=0
(n + 1)Bn,iρ−n−2

i (μi)

×{nr,i(μi)
1 − μ2

i
[μiPn(μi) − Pn+1(μi)] − nθ,i(μi)Pn(μi)}

+
√

1 − μ2
i

∞

∑
n=0

∞

∑
m=0

Bm,j
(m + n)!
m!n!

R−m−n−1

× ρn−1
i (μi){nnθ,i(μi)Pn(μi)

+ (n + 1)nr,i(μi)
1 − μ2

i
[μiPn(μi) − Pn+1(μi)]}. (32)

Equation (30) can be substituted into Eq. (29) for the electrostatic
force and rewritten as

Fz,i = −2πε0km

1

∫
−1

{[1
2
(E2

n,i − E2
τ,i)μi − En,iEτ,i

√
1 − μ2

i ]nr

− [1
2
(E2

n,i − E2
τ,i)
√

1 − μ2
i + En,iEτ,iμi]

×nθ
√

1 − μ2
i } × ρ

2(μi)

×

¿
ÁÁÀ1 − [( 1

a2
i
− 1
c2
i
)μi]

2

ρ4(μi)(1 − μ2
i )dμi, (33)

which solves the posed electrostatic problem.

III. RESULTS AND DISCUSSION
We next consider the effect of nonsphericity on the nature of

electrostatic interactions between two polarizable spheroids of the

same shape, size (a1 = a2 ≡ a, c1 = c2 ≡ c), and dielectric constant
(k1 = k2 ≡ k), but with different charges Q1/Q2 = 2, whilst keeping
the capacitance of spheroids constant. We assume that at an infinite
separation distance between spheroids, their capacitance is equal to
the capacitance of a sphere. The assumption of the constant capac-
itance implies that during the deformation of an isolated sphere,
the ratio between its surface charge and surface potential remains
constant. Therefore, this assumption has been chosen as the most
physically meaningful for the case when the effect of nonsphericity
on the electrostatic interaction is studied and the effects of changed
charge and/or potential are excluded.

This approach allows us to find the relationship between the
axes of a spheroid, a and c, and the radius of the corresponding
sphere, r, into which the spheroid degenerates at a = c. Under the
assumption of constant capacitance,

Csphere = Cspheroid, (34)

where

Csphere = 4πkmε0r (35)
and

Cspheroid = 4πkmε0 ×
⎧⎪⎪⎪⎨⎪⎪⎪⎩

√
a2 − c2(arctan

√

a2−c2

c )
−1

, a > c;

2
√
c2 − a2(ln c+

√

c2−a2

c−
√

c2−a2
)
−1

, c > a.
(36)

Using the nonsphericity parameter x = a/c and substituting Eqs. (35)
and (36) into (34) gives the following relationship between the radii
of a spheroid, a, c and the radius of the equivalent sphere, r:

c =
⎧⎪⎪⎨⎪⎪⎩

r arctan
√

x2−1
√

x2−1
, a > c (oblate);

r
2
√

1−x2
ln 1+

√

1−x2

1−
√

1−x2
, c > a (prolate).

(37)

The relationship (38) has been used in all numerical tests presented
in this paper for a range of x from 0.83 to 1.17.

The electric potential generated by a point charge Qpoint is typi-
cally represented by equipotential surfaces (regions in which every
point has the same potential), which take the form of concentric
spheres centered at the point charge.39 If the point charge is substi-
tuted by a small sphere with the same charge, Qsphere = Qpoint , and the
uniformly distributed surface potential (this condition also implies
the uniformly distributed surface charge), the sphere will create the
same electric potential outside its boundaries as the point charge
(Gauss’s law). Therefore, the electrostatic forces between two point
charges and two uniformly charged nonpolarizable and nonover-
lapping spheres are equivalent. The same reasoning can also be
applied to charged objects of any arbitrary shape using the super-
position principle. For example, a prolate spheroid has an equipo-
tential surface of a uniformly charged rod with the length equal to
the interfocal distance 2f of the corresponding spheroid, and an
oblate spheroid has an equipotential surface of a disc with the radius
equal to the radius of the focal line f and with the following radial
distribution of surface charge density,41

σ(r) = Qdisc

2πf
√

f 2 − r2
d

, (38)
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where Qdisc is the charge of the disc and rd is a radial coordinate
on the disc surface. Table I contains the analytical equations of the
electrostatic forces for the following cases:

● two point charges at a distance R, which corresponds to two
spheres of radii r1 and r2 at a surface-to-surface separation
s = R − r1 − r2;

● a charged rod of length 2f and a point charge separated at a
distance R from the center of the rod that corresponds to a
prolate spheroid with c = f /

√
1 − x2, and a sphere of radius

r at a surface-to-surface separation s = R − c − r;
● a charged disc of radius f and a point charge at a distance

R from the center of the disc that corresponds to an oblate
spheroid with c = f /

√
x2 − 1, and a sphere of radius r at a

surface-to-surface separation s = R − c − r;
● a charged disc of radius f 1 and a charged rod of length 2f 2

at a distance R between their centers that corresponds to an
oblate spheroid with c1 = f1/

√
x2

1 − 1, and a prolate spheroid

with c2 = f2/
√

1 − x2
2 at a surface-to-surface separation s = R

− c1 − c2;
● two charged rods of lengths 2f 1 and 2f 2 at a distance

R between their centers that correspond to two prolate
spheroids with c1,2 = f1,2/

√
1 − x2

1,2 at a surface-to-surface
separation s = R − c1 − c2.

The electrostatic force calculated using Eq. (33) for nonpolarizable
spheroids: k1 = k2 = km, including a sphere as a specific case, should,
therefore, give the same result as the electrostatic force obtained
from the simple expressions summarized in Table I for cases involv-
ing a charged rod, a disc, and a point charge. For these simple
geometries, Fig. 3 compares calculations of the electrostatic force as
a function of surface-to-surface as defined with reference to Table I.
The results obtained using the methodology presented above and the
corresponding analytical expressions given in Table I are in excellent
agreement. These limiting cases can be interpreted as electrostatic
forces between nonpolarizable spheroids.

TABLE I. Simple limiting cases of the interactions involving a charged rod, disc, and point charge. Expressions for the
electrostatic force are derived in Appendix A.

Fpoint - point = K
Q1Q2

R2 (Coulomb force)

Frod - point = K
QrodQpoint

R2 − f 2

Fdisk - point = K
QdiscQpoint

R2 + f 2

Fdisc - rod = K
QdiscQrod

2f1f2
(arctan

R + f2
f1
− arctan

R − f2
f1
)

Frod - rod = K
Qrod1Qrod2

4f1f2
ln
(R + f1 − f2)(R − f1 + f2)
(R + f1 + f2)(R − f1 − f2)
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FIG. 3. (a) Electrostatic force, scaled by the Coulomb force, calculated as a function of the surface-to-surface separation for a prolate spheroid and a sphere (1), an oblate
spheroid and a sphere (2), an oblate and a prolate spheroid (3), two prolate spheroids (4), and two spheres (Coulomb force) (5). Lines are analytical results given by the
equations in Table I; symbols are numerical calculations using Eq. (33) with x = 4/3 for oblate spheroids and x = 3/4 for prolate spheroids. (b) Relative errors.

Consider next the transition from repulsion to attraction of
like charged identical spheroids by changing their eccentricity. It
should be noted that determining the range of parameters in which,
for particles of the same charge, a transition from repulsion to
attraction takes place as the distance between them decreases is
not a trivial task. Even for spherical particles, the boundaries of
this region are determined by the ratio of the charges on the par-
ticles, the ratio of their sizes, and their dielectric constant rela-
tive to that of the medium.32,42 For particles with a spheroidal
shape, even for the case of an axially symmetric distribution of
surface charges, the eccentricities have to be added to the param-
eter space. This challenging task remains outside the scope of the
present work, which is focused primarily on the development of
analytical and numerical solutions to the electrostatic interactions
between different nonspherical geometries of charged dielectric
particles.

It is well known that for the case of spherical particles of the
same radius carrying equal charges, there is no attraction even for
conducting particles.42,43 Consider the case when one particle car-
ries twice the charge of the other, i.e., Q1 = 2Q2. As the distance
between the surfaces of the particles decreases, the number of terms
in the multipolar expansion required for an accurate estimation of
the potential increases and the dimensionality of the set of alge-
braic equations defining the expansion coefficients increases accord-
ingly (see Ref. 44). Therefore, the test calculations are restricted to
interactions at sufficiently large interparticle distances, s = 0.01r, at
which for spherical particles with the same dielectric constant repul-
sion transforms into attraction at k1 = k2 ≈ 18.5 (km = 1). There-
fore, for comparison, we consider the values k1 = k2 = 18, 18.5,
and 19.

For the case of polarizable spheroidal particles in vacuum
(km = 1), Fig. 4 shows the electrostatic force between two identi-
cal spheroids carrying different amounts of charge (Q1/Q2 = 2) as a
function of the nonsphericity parameter, x, calculated for three val-
ues of the dielectric constant, k = 18, 18.5, and 19. The spheroids
are kept at a fixed surface-to-surface separation s = 0.01r. The

values given for the dielectric constants have been selected from
extensive numerical experiments, to reveal the switch in electro-
static behavior from attraction to repulsion, between like-charged
spheroids depending on the value of the nonsphericity parame-
ter, x. For k = 18.5 and above, the interaction can switch from
a counterintuitive attraction between like-charged particles (neg-
ative value of the force ratio) driven by charge-induced polariza-
tion to repulsion (positive value of the force ratio). This switch
occurs either as the shape of the interacting spheroidal particles
changes from oblate to prolate or if the value of the nonspheric-
ity parameter for two oblate spheroids is increased sufficiently. For
chosen values of dielectric constant and charge ratio, the mini-
mum in the electrostatic force corresponds to two oblate spheroids
(x > 1). This behavior is a result of a specific distribution of the

FIG. 4. The electrostatic force scaled by the Coulomb force between two identical
like-charged spheroids in vacuum (km = 1) with the charge ratio of Q1/Q2 = 2
calculated as a function of the nonsphericity parameter x = a/c at a fixed surface-
to-surface separation s = 0.01r for three values of the dielectric constant k = 18,
18.5, and 19.
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surface charge, which depends on the nonsphericity parameter (see
Fig. 2), and the complex nature of polarization interactions between
spheroids.

IV. CONCLUSIONS
An analytical expression for the electrostatic force acting

between two dielectric spheroids located on the same axis of sym-
metry is presented. Variation in the electrostatic force with a change
in the value of the nonsphericity parameter shows an interesting
switch in electrostatic behavior between two like-charged spheroids
with a charge ratio of 2. At a critical value of the dielectric constant,
k = 18.5, and above, the F/FCoulomb ratio has a negative value, which
corresponds to an attractive interaction between like-charged oblate
spheroids. If the shape of the interacting spheroidal particles changes
from oblate to prolate or if the value of the nonsphericity parameter
of two oblates is increased sufficiently, the interaction switches from
attraction to repulsion.

The proposed analytical model has been benchmarked against
existing analytical solutions for the interaction between nonpolariz-
able rods, discs, and point charges and against an earlier electrostatic
model for dielectric spheres,32 showing excellent agreement. The
result is of practical significance and represents a first step toward a
more general theory of electrostatic interactions between nonspher-
ical objects as it can be generalized to any arbitrary shape with axial
symmetry, as shown in the approach taken in Ref. 45. Derivations
for the electrostatic force for the simple limiting cases of a charged
rod, disc, and point charge and additional computational issues are
discussed in Appendixes A–C.
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APPENDIX A: DERIVATION OF ELECTROSTATIC
FORCES FOR SIMPLE LIMITING CASES
GIVEN IN Table I
1. Uniformly charged rod and point charge

The force between a uniformly charged rod and a point charge
(see Fig. 5) can be derived by integrating the force between an
infinitely small element of the rod and the point charge over the
length of the rod,

FIG. 5. A uniformly charged rod with charge Qrod, length 2f, and a point charge
Qpoint. R is the distance between the center of the rod and the point charge.

FIG. 6. Two uniformly charged rods with charges Qrod1 and Qrod2 and lengths 2f 1
and 2f 2. R is the distance between their centers.

Frod,z =
R+f

∫
R−f

K
QrodQpoint

z2
dz
2f
= KQrodQpoint

R2 − f 2 , (A1)

where K = 1
4πϵ0
≈ 9 × 109 Vm/C is a constant of proportionality.

2. Two uniformly charged rods
The force between two uniformly charged rods (see Fig. 6) can

be derived by a double integration of the force between infinitely
small elements of the rods over their lengths,

Frod - rod =
R+f2

∫
R−f2

f1

∫
−f1

K
Qrod1Qrod2

(z2 − z1)2
dz1

2f1
dz2

2f2

= KQrod1Qrod2

4f1f2
ln
(R + f1 − f2)(R − f1 + f2)
(R + f1 + f2)(R − f1 − f2)

. (A2)

Here, z = 0 is assumed to be the center of the first rod.

3. Charged disc and point charge
The force between a uniformly charged ring and a point charge

(see Fig. 7) can be derived by integrating the force between an
infinitely small element of the ring and the point charge over the
circumference of the ring,

Fr,z =
2πr

∫
0

KQpoint
cosα
r2 + R2

Qring

2πr
dl = KQpointQring

R
(r2 + R2)3/2

. (A3)

The force between a disc with the surface charge density

FIG. 7. A uniformly charged ring with charge Qring, radius r, and a point charge
Qpoint. R is the distance between the center of the ring and the point charge.
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FIG. 8. A charged disc Qdisc with the radius f and a point charge Qpoint. R is the
distance between the center of the disc and the point charge.

σ(r) = Qdisc

2πf
√
f 2 − r2

and a point charge (see Fig. 8) can be calculated by integrating the
force from Eq. (A3) between an infinitely thin ring element of the
disc and the point charge over the circumference of the ring,

Fd,z =
f

∫
0

KQpoint
h

(r2 + R2)3/2
× Qdisc

2πf
√
f 2 − r2

2πrdr = KQpointQdisc

(f 2 + R2) .

(A4)

4. Charged disc and uniformly charged rod
The force between a disc with the surface charge density

σ(r) = Qdisc

2πf
√
f 2 − r2

and a uniformly charged rod (see Fig. 9) can be calculated by inte-
grating the force from Eq. (A4) between the charged disc and an
infinitely small element of the rod over the length of the rod,

FIG. 9. A charged disc Qdisc with the radius f 1 and a uniformly charged rod Qrod
with the length 2f 2. R is the distance between the centers of the disc and the rod.

Fd,z =
R+f2

∫
R−f2

KQdiscQroddz
2f2(f 2

1 + z2)
= KQdiscQrod

2f1f2

×(arctan
R + f2
f1
− arctan

R − f2
f1
). (A5)

APPENDIX B: LIMITING CASE OF TWO
POLARIZABLE SPHERES

As verification, the presented methodology has been tested for
the case of two dielectric spheres: ai = ci ≡ ai, i = 1, 2. In this case,

ϕi,0 =
Qi

4πkmε0ai

and ρi(μi) = ai. Equation (11) takes the form

∞

∑
n=0

1
2n + 1

B′na−n−1δnk = ϕ0δk,0, (B1)

which gives

B′k = (2k + 1)ak+1ϕ0δk,0. (B2)

The normal vector components (15) are deduced to

nr = 1, nθ = 0. (B3)

Substituting (B2) and (B3) into (14) gives

σ(μ) = Q
4πa2 . (B4)

Therefore, the first equation in (27) takes the form

An,i = Bn,ia−2n−1
i +

∞

∑
m=0

Bm,j
(m + n)!
m!n!

R−m−n−1, (B5)

whereas the second equation in (27) gives

kmB0,ia−1
i = aiϕi,0, k = 0;

kiAk,ika
k−1
i + kmBk,i(k + 1)a−k−2

i

− km

∞

∑
n=0

Bn,jkak−1
i
(k + n)!
k!n!

R−k−n−1 = 0, k ≥ 1.

(B6)

Substituting (B5) into (B6) yields

Bk,i

ak+1
i

+
(ki − km)k

(ki + km)k + km
aki ×

∞

∑
n=0

Bn,j
(k + n)!
k!n!

R−k−n−1 = σiai
kmε0

δk0.

(B7)

The same equation was obtained in Ref. 32 for the case of km = 1.
In order to confirm the analytical derivations made above, the

electrostatic force between two polarizable spheres of the same size
has been calculated using Eq. (33) and compared with the force
calculated using the model from Ref. 32. The following parame-
ters have been chosen to reproduce the most relevant case of like
charge attraction: k1 = k2 = 20, Q1 = 1e, Q2 = 10e, and km = 1.
Figure 10 demonstrates that the results are in a good agreement
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FIG. 10. Electrostatic force (relative to the Coulomb force) between two polarizable
spheres of the same radius r with the dielectric constants k1 = k2 = 20 and charges
Q2/Q1 = 2 in vacuum km = 1 calculated by means of the methodology from Ref. 32
(line) and the present model (33) (symbols) vs surface-to-surface separation s rel-
ative to the sphere radius r. The embedded plot represents the relative difference
between the forces.

and the relative error does not exceed 1% at short separation and
less than 10−5% when the spheres are far apart. The greatest error
(0̃.15%) is achieved at the point where the force changes the sign
and crosses the x-axis.

APPENDIX C: ERROR ANALYSIS RELATED
TO THE NUMBER OF TERMS IN THE EXPANSION
OF THE ELECTROSTATIC FORCE

Convergence of the present methodology is demonstrated for
the example of two geometrically identical spheroids with the same
dielectric constants but different charges. Numerical experiments
showed that in the case of Q1/Q2 = 2 and k1 = k2 = 17 and
20, the solution is stable for 0.83 ≤ x ≤ 1.17. Figure 11 shows
the electrostatic forces and the calculation errors vs number of
terms for spheroids described here at a separation of 0.01r. For
the examples of prolate spheroids and spheres, the method shows
excellent convergence at values of n in the range 20 ≤ n ≤ 140,
whereas for the case of oblate spheroids, convergence stops at
n = 120, and thereafter, the error increases. The linear sys-
tem (27) is generally sparse and ill-conditioned, i.e., contains
many zero elements and elements with large differences in val-
ues. Moreover, the problem of two oblate spheroids has no trivial
solution for the nonpolarizable case (unlike the problem of two
prolate, nonpolarizable spheroids). Three separate numerical meth-
ods have been tried to solve problem (27):46 lower-upper (LU)
decomposition with iterative improvement of a solution, singu-
lar value decomposition (SVD), and preconditioned biconjugate
gradient method (PBCG). All methods give identical results, and
for further calculations, the LU-decomposition method has been
chosen.

FIG. 11. Electrostatic force and calculation error vs number of terms for two dielectric spheroids with the dielectric constant k1 = k2 = 17 [(a) and (b)] and 20 [(c) and (d)] in
vacuum km = 1 at x = 0.83 (1), 1 (2), and 1.17 (3). Lines are used to guide the eye.
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THEOCHEM 202, 169 (1989).
17S. Liu and Z. Tang, Nano Today 5, 267 (2010).
18K. Khairy, J. Foo, and J. Howard, Cell. Mol. Bioeng. 1, 173 (2008).
19W. Taylor, J. M. Thornton, and W. Turnell, J. Mol. Graphics 1, 30 (1983).
20J. S. Myung, F. Roosen-Runge, R. G. Winkler, G. Gompper, P. Schurtenberger,
and A. Stradner, J. Phys. Chem. B 122, 12396 (2018).
21K. J. Bishop, C. E. Wilmer, S. Soh, and B. A. Grzybowski, small 5, 1600 (2009).
22M. Warner and E. M. Terentjev, Liquid Crystal Elastomers (Oxford University
Press, 2007), Vol. 120.
23P. Schiller, S. Kruger, M. Wahab, and H.-J. Mogel, Langmuir 27, 10429
(2011).
24O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang,
T. F. Eck, H. Volten, O. Munoz, B. Veihelmann et al., J. Geophys. Res.: Atmos.
111, D11208, https://doi.org/doi:10.1029/2005jd006619 (2006).

25S. N. Fejer, D. Chakrabarti, and D. J. Wales, Soft Matter 7, 3553 (2011).
26S. Flint, L. Enquist, V. Racaniello, and A. Skalka, Pathogenesis and Control
(American Society for Microbiology Press, Washington, DC, 2000), p. 674.
27J. Benjamin, B. K. Ganser-Pornillos, W. F. Tivol, W. I. Sundquist, and
G. J. Jensen, J. Mol. Biol. 346, 577 (2005).
28H. Lu and M. H. Stenzel, Small 14, 1702858 (2018).
29A. Azari, J. J. Crassous, A. M. Mihut, E. Bialik, P. Schurtenberger, J.
Stenhammar, and P. Linse, Langmuir 33, 13834 (2017).
30V. Jadhao, Z. Yao, C. K. Thomas, and M. Olvera de la Cruz, Phys. Rev. E 91,
032305 (2015).
31T. Murovec and C. Brosseau, Appl. Phys. Lett. 102, 084105 (2013).
32E. Bichoutskaia, A. L. Boatwright, A. Khachatourian, and A. J. Stace, J. Chem.
Phys. 133, 024105 (2010).
33A. Khachatourian, H.-K. Chan, A. J. Stace, and E. Bichoutskaia, J. Chem. Phys.
140, 074107 (2014).
34E. B. Lindgren, I. N. Derbenev, A. Khachatourian, H.-K. Chan, A. J. Stace, and
E. Besley, J. Chem. Theory Comput. 14, 905 (2018).
35I. N. Derbenev, A. V. Filippov, A. J. Stace, and E. Besley, J. Chem. Phys. 145,
084103 (2016).
36I. N. Derbenev, A. V. Filippov, A. J. Stace, and E. Besley, Soft Matter 14, 5480
(2018).
37J. D. Jackson, Classical Electrodynamics (John Wiley & Sons Ltd., New York,
London, Sydney, 1962).
38E. W. Hobson, The Theory of Spherical and Ellipsoidal Harmonics (The Univer-
sity Press, Cambridge, 1931).
39W. Smythe, Static and Dynamic Electricity (McGrawHill Book Co., 1950).
40V. Batygin and I. Toptygin, Problems in Electrodynamics (Academic Press,
1978).
41D. Sivukhin, A Course of General Physics (Electricity Nauka, Moscow, 1996),
Vol. III.
42V. Munirov and A. Filippov, J. Exp. Theor. Phys. 117, 809 (2013).
43J. Lekner, Proc. R. Soc. A 468, 2829 (2012).
44M. Rodin and A. Filippov, J. Phys.: Conf. Ser. 927, 012045 (2017).
45A. Filippov, J. Exp. Theor. Phys. 123, 716 (2016).
46W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical
Recipes in Fortran 90 (Cambridge University Press, Cambridge, 1996), Vol. 2.
47N. D. Birell and P. C. W. Davies, Quantum Fields in Curved Space (Cambridge
University Press, 1982).

J. Chem. Phys. 152, 024121 (2020); doi: 10.1063/1.5129756 152, 024121-11

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1038/nmat1949
https://doi.org/10.1021/ja109524h
https://doi.org/10.1021/acs.langmuir.6b00678
https://doi.org/10.1111/j.1151-2916.1991.tb04102.x
https://doi.org/10.1016/0021-9797(84)90208-x
https://doi.org/10.1038/35022535
https://doi.org/10.1016/0021-9797(91)90242-z
https://doi.org/10.1002/(SICI)1521-4095(199908)11:12<1021::AID-ADMA1021>3.0.CO;2-S
https://doi.org/10.1038/35003535
https://doi.org/10.1021/jp971656q
https://doi.org/10.1021/la046908a
https://doi.org/10.1021/nn100869j
https://doi.org/10.1038/nmat1954
https://doi.org/10.1038/nmat1954
https://doi.org/10.1039/b915126e
https://doi.org/10.1126/science.1176587
https://doi.org/10.1016/0166-1280(89)87014-9
https://doi.org/10.1016/0166-1280(89)87014-9
https://doi.org/10.1016/j.nantod.2010.05.006
https://doi.org/10.1007/s12195-008-0019-5
https://doi.org/10.1016/0263-7855(83)80001-0
https://doi.org/10.1021/acs.jpcb.8b07901
https://doi.org/10.1002/smll.200900358
https://doi.org/10.1021/la2015918
https://doi.org/doi:10.1029/2005jd006619
https://doi.org/10.1039/c0sm01289k
https://doi.org/10.1016/j.jmb.2004.11.064
https://doi.org/10.1002/smll.201702858
https://doi.org/10.1021/acs.langmuir.7b02040
https://doi.org/10.1103/physreve.91.032305
https://doi.org/10.1063/1.4793664
https://doi.org/10.1063/1.3457157
https://doi.org/10.1063/1.3457157
https://doi.org/10.1063/1.4862897
https://doi.org/10.1021/acs.jctc.7b00647
https://doi.org/10.1063/1.4961091
https://doi.org/10.1039/c8sm01068d
https://doi.org/10.1134/s1063776113130050
https://doi.org/10.1098/rspa.2012.0133
https://doi.org/10.1088/1742-6596/927/1/012045
https://doi.org/10.1134/s1063776116100034

