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This paper presents a general theory elucidating the relationships between the structures and cohesive energetics
of alkali halide nanocrystals consisting of small sections of bulk rocksalt structures withm1 andm2 rows but
infinite along thez axis. The theory introduces the electrostatic interactions between the ions treated as point
charges and the short-range repulsions between the closest ion neighbors with the latter terms written in the
Born formAr-n. Minimum energy structures are defined by the distancesae andbe separating the closest ions
perpendicular and parallel to thez direction. The ratioae/be, defining the crystal shape, is independent of the
strengthA of the short-range repulsion, greater than the bulk value of unity, and increases with decrease of
the crystal cross section orn. This ratio tends toward unity in the hard sphere limit of infiniten. Both be/Re

6:6

andae/Re
6:6, with the bulk separationRe

6:6, are less than one, increase with increase of the crystal cross section
or n, and are independent ofA if this is independent of structure. The structural dependence ofA increases
its value with a decreasing crystal cross section rendering closer to unity the ratiosae/be, be/Re

6:6, andae/Re
6:6.

Energy gains on relaxing the crystal toward equilibrium from its bulk separations decrease with increase of
the crystal cross section orn, being about 60 kJ/mol for a one-dimensional chain withn ) 6 but 0.5 kJ/mol
for m1 ) m2 ) 4 with n ) 12. The energy gained on relaxing to a structure withae/be constrained at unity
is about 10 times greater than the further energy gains consequent on removing this constraint. The present
theory neglecting the interaction between ions and the encapsulating nanotube explains the experimentally
measuredbe/Re

6:6 ratios. The observation that theae/Re
6:6 values are greater than one shows that ion-wall

interactions are important in determining the values ofae.

1. Motivation

Single walled carbon nanotubes (SWNTs) are ideal nano-
metric objects which facilitate the formation of low-dimensional
ordered structures within their cavity. Filling materials delib-
erately introduced in SWNTs range from single elements,
specifically, heavy metals such as Ru,1 Bi,2 Ag,3 Au, Pt, and
Pd4 to molecules such as fullerenes,5,6 metal oxides,7 and
halides.8-13 The main interests of filling SWNTs are to enforce
the encapsulated material to adopt a low-dimensional morphol-
ogy and to produce templates for atomically regulated low-
dimensional crystal growth.14 Recently, the crystal growth
behavior of ionic solids in SWNTs, and especially of single
binary alkali halides such as KI, has been thoroughly investi-
gated both experimentally10-12 and theoretically.15-17 The
experimental studies revealed that the structures of the encap-
sulated crystals were systematically distorted from those of the
bulk, while the theoretical studies, using mainly molecular
dynamics simulations, yielded valuable insights into the possible
mechanisms of crystal growth inside a SWNT.

In this paper, a general analytical theory for the structures
and energetics of nanocrystalline ionic solids is presented. The
aim is not only to present a comprehensive mathematical
formulation but also to provide physical insights into the
resulting predictions. The paper is concerned with structures of
the alkali halides encapsulated with the〈001〉 direction parallel
to the nanotube axis. Although such crystals are, in principle,
infinite in extent along thezdirection, a view along this direction
will show a small plane consisting ofm1 rows andm2 columns

of ions with alternating cations and anions in each row. The
geometry of such a crystal is defined after specifying both the
distanceb between the successive planes encounted on increas-
ing the z coordinate and the distancea between neighboring
ions in the same plane. These coordinates are depicted in Figure
1. Understanding these structures first requires that one disen-
tangles the effects which arise solely from the finite extent of
the crystal in two of the directions from any further effects* Corresponding author.

Figure 1. Structures of 2× 1 (top) and 2× 2 (bottom) nanocrystals,
infinite along thez direction, showing one unit repeat.
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generated from explicit interactions between the encapsulated
ions and the nanotube wall. The answering of this question raises
the possibility that the nanotube plays no role beyond that of
an essentially passive spectator which simply constrains the
crystal geometry by defining the numbers (m1 andm2) of rows
and columns in the planes. In this event, the wall would provide
no more than a potential of the square well type in which the
interaction with any ion is zero unless it directly encounters
the wall in which event the interaction is sufficiently large as
to expel the ion from the immediate vicinity of the wall.
Disentangling the effects of ion-wall interactions from those
generated solely by the reduced dimensionality of the crystals
requires that one understands the structures and energetics of
isolated crystals of the type shown in Figure 1, which, therefore,
form the main subject of the present investigation. The over-
arching objective of this paper is therefore to develop a general
theory which explains the inter-relationships between both
crystals differing only in the number (m) of rows and columns
in the planes and between crystals having the samem but
chemically different ions. Such a theory must also expose the
relationship between the nanocrystals and the bulk material
having the rock-salt structure, thereby showing how the proper-
ties of the nanocrystals evolve toward those of the bulk as the
number of rows and columns in the planes is increased. The
initial step in generating a physically transparent yet general
theory of all such nanocrystals is to consider only the dominant
interactions. These are the electrostatic interactions between the
ions considered as point charges and the short-range repulsive
interactions between each cation and just its immediately
neighboring anions. This approach not only ensures that the
theory will be mathematically tractable and appear in a relatively
simple form but is also provides the benchmark against which
the effects of introducing further but smaller interactions can
be gauged. Such a theory should ideally incorporate the effects
of chemical variation of the ions through a very small number
of parameters defining the short-range interactions. The present
theory can therefore be regarded as the natural extension, to
nanocrystals, of the classic Born description18 of bulk materials.

2. Analytic Deduction of Overall Structural Trends

2.1. Basic Definitions.The Born model,18 although semiem-
pirical, provides the simplest satisfactory overall account of the
cohesion of bulk ionic crystals. This emerges as the balance
between the overall Coulombic attractions of the ions, treated
as point charges, and the short-range repulsive forces between
the closest pairs of ions. The latter interactions, maintaining
the crystal at equilibrium against the attractive point coulomb
term, can, conceptually, be taken to include all effects arising
from the finite spatial extension of the ions. These include not
only the overlap induced repulsion that is ultimately a purely
quantum effect originating from the Pauli principle but also any
modifications of the purely electrostatic interactions. These two
interactions, namely, the point Coulombic and the short-range
repulsion, will also make the largest contributions to the cohesive

energy, which in turn determines the structure of the nanoc-
rystals in the absence of interaction with the encapsulating
nanotube. The simplest yet still mathematically tractable overall
account of the structures and cohesive energetics of such crystals
is therefore developed by including only these two terms. The
need for avoiding excessively complicated and possibly intrac-
table mathematics dictates that the short-range repulsion between
two ions separated by a distancer is taken to have the original
Born form A/rn rather than the possibly more accurate Born-
Mayer expression.18 It is now well established19 from measure-
ments of the compressibilities of a wide range of essentially
ionic crystals that the Born exponentn is the average of inde-
pendent cation and anion contributions. The contribution from
an ion having a 2p6 outermost electronic configuration is 7; those
from ions having such configurations of 3p,6 4p6, and 5p6 are
9, 10, and 12, respectively, while the Li+ contribution is 5.

For any of the nanocrystalline alkali halides, the individual
planes will necessarily be square in cross section in the lowest
energy structure because there is no mathematical distinction
between the cations and anions in the present Born type model.
The geometry is therefore defined by just the two parametersa
andb defined in section 1. For a nanocrystal containing 1 mol
of stoichiometric formula units and with geometry thus defined,
the total crystal cohesive energyNAU(a, b), negative for a bound
crystal and measured relative to the sum of the energies of the
free isolated ions, is given by

Here,NA is Avogadros number so thatNAUmad(a, b) is the total
Madelung energy of 1 mol. The term 2A/bn describes the
repulsion experienced by any one ion with its two neighboring
ions in the same chain. The constantC is defined such that
NACA/an is, for 1 mol, the sum of all the short-range repulsions
between ions in neighboring chains. Numerical values of these
constants are reported in Table 1. For systems, such as the 2×
2 nanocrystal or a bulk cubic crystal, in which all the chains
are located in the same environment, the constantC is the
number of anions located at distancea from any one cation,
any such anion being in a neighboring chain. Thus, for such
systems,C equals the coordination number minus 2. The
derivation ofC for systems in which not all the chains are in
the same environment can be illustrated by considering 1 mol
of a 3× 3 nanocrystal, this havingNA/9 cations in each chain.
Each cation at the center of one of the planes, having also cations
at the four corners, experiences repulsion from four anions, so
that all such cations contribute 4NA/9 repulsions to the molar
energy. Although each cation at the corner experiences only
two such repulsions, there are four such cations, so that all these
cations contribute 8NA/9 repulsions to the molar energy. Planes
of the neighboring type contain only cations at the middle of
the edges, there being four such ions. Since each of these
experiences three repulsions, all such ions contribute 12NA/9

TABLE 1: Coefficients Determining the Interchain Electrostatic and Repulsion Energies

repulsion energy Madelung energy

crystallite nc C Mb(1) q ncp
q

2 × 1 2 1 0.116741 1 ncp
1 ) 1

2 × 2 4 2 0.204910 1, 2 ncp
1 ) 4, ncp

2 ) 2
3 × 3 9 8/3 0.259785 1, 2, 4, 5, 8 ncp

1 ) 12,ncp
2 ) 8, ncp

4 ) 6, ncp
5 ) 8, ncp

8 ) 2
4 × 4 16 3 0.289080 1, 2, 4, 5, 8,

9,10, 13, 18
ncp

1 ) 24,ncp
2 ) 18,ncp

4 ) 16,ncp
5 ) 24,

ncp
8 ) 8, ncp

9 ) 8, ncp
10 ) 12,ncp

13 ) 8, ncp
18 ) 2

bulk ∞ 4 0.361270

NAU(a, b) ) NA(Umad(a, b) + 2A

bn
+ CA

an ) (1)
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repulsions to the molar energy. The total number of repulsions
from cations in three of the environments just considered is
24NA/9 which explains the value of 8/3 forC reported in Table
1. TheC value for the 4× 4 crystal can be similarly derived.
The observation that every pair of ions experiencing such a
short-range repulsion will also contribute-1/a to the Madelung
energy of the crystal allows theC constants to be extracted from
the calculation ofUmad(a, b) to be presented in section 2.3.

2.2. Application to a One-Dimensional Crystal.For a one-
dimensional (1D) crystal consisting of a single alternating
sequence ofNA cations andNA anions, the form of expression
1 for its cohesive energyU1D(b), depending on just the single
geometrical parameterb, reduces to

The Madelung constantM1D is readily evaluated through

The equilibrium separation,be
1D, is that minimizingU1D(b) and

is found from 2 to be given by

The standard expression for the cohesive energy of 1 mol of
bulk three-dimensional crystal having the rock-salt structure with
internuclear separationR differs from 2 only in thatM1D is
replaced by the Madelung constantM6:6() 1.74756456) and that
the repulsive term becomes 6A/Rn. For this bulk crystal, the
equilibrium separation, denotedRe

6:6, is given by

It follows from 4 and 5 that the ratio of the equilibrium
separations in the 1D chain and the bulk is given by

Result 6 shows that the fractional change in the interionic
distance on passing from the bulk to the 1D chain is independent
of the strength, as defined byA, of the short-range repulsion. It
is shown in the next section that this is a general result valid
for all the nanocrystals. Thus, relation 6 shows that the fractional
changes in the geometry are determined solely by the range of
the repulsion defined by the exponentn. Since the ratio in
brackets in 6 is less than unity, the ionic separation in the chain
is predicted to be contracted relative to that of the bulk. It is
predicted from the numerical values forbe

1D/Re
6:6, equal to

0.42021/(n-1) and depicted in Figure 2 as a function ofn, that
the greatest fractional contraction of 0.841 will occur for LiF,
for which n is 6. It is further predicted from this relation that
the contraction decreases with increasingn until it vanishes in
the hard sphere limit ofn tending to infinity. In physical terms,
it can be seen that these contractions arise because, on passing
from the bulk to the 1D system, the factor of 3 reduction in the
number of short-range repulsions is much greater than the
fractional reduction in the Madelung energy by the ratio
(2 ln 2)/1.747.

2.3. Difference between the Longitudinal and Transverse
Separations.2.3.1. Fundamental Equations and Deductions.
For the nanocrystals containing more than a single chain, it is
useful to distinguish between the intra- and interchain contribu-
tions to the total Madelung energyNAUmad(a, b). Although there
areNA/nc cations in a nanocrystal composed ofnc chains, the
total intrachain Madelung energy in a crystal havingnc chains
is still given by-NA(2 ln 2)/b, unchanged from the single chain
system. After defining the total interchain Madelung energy in
1 mol asNAUic

mad(a, b), the energyU(a, b) in expression 1 for
the cohesion becomes

For the purposes of calculatingUic
mad(a, b), the relevant

properties of any pairs of chains are specified by the integerq
which yields the perpendicular distance between the two chains.
This is the distance between two ions in the same plane, each
of which lies in one of the two chains. If the ion in the second
chain hasx andy coordinates ofja andka measured relative to
the first ion, so thatj andk are integers, thenq is defined as (j2

+ k2), so that distancea(j2 + k2)1/2 between the two ions is
axq. Table 1 presents all theq values arising in each
nanocrystal. Since the two ions will have the same charge ifq
is even but opposite charges whenq is odd, the electrostatic
interaction energy of an ion in the first chain with the ion in
the second chain is (-1)q/(axq). The distance between the ion
in the first chain and one in the second, if the latter resides in
a plane havingz coordinate ofmb relative to the first plane, is
(qa2 + m2b2)1/2, wherem is a positive integer. The electrostatic
energy of interaction between these two ions is therefore
(-1)q+m/(qa2 + m2b2)1/2. The total electrostatic interaction
energy of interaction between the one ion in the first chain with
all ions in the second chain is therefore given by (-1)q/(axq)
+ 2∑m)1

∞ (-1)q+m/(qa2 + m2b2)1/2 because, for nonzerom,
there are two planes located at a distancembfrom the first plane.
Since any chain containsNA/nc cations, the electrostatic interac-
tion energy between all these cations in the first chain with all

Figure 2. Predicted ratios of the optimum constrained (a ) b)
separations in nanocrystals relative to the bulk. The lines are from Born
model 54: solid lines are for the 1D system, and dotted lines are for
the 2× 1 crystal.A ) A6:6 for lines 1 and 2; lines 3 and 4 (dotted)
havef ) 1.5; lines 5 (solid) and 6 havef ) 3. The crosses and circles
are for the 1D crystals of indicated compositions. The crosses are
derived from 54 and 53 using thef value taken from the ab initio
computations, as described in section 3.2.1. The circles are derived by
locating theR value minimizing the ab initioU1D(R) with inclusion of
the dispersive attractions.

U1D(b) ) -
M1D

b
+ 2A

bn
(2)

M1D ) 2∑
m)1

∞ (-1)m+1

m
) 2 ln 2 (3)

be
1D ) (2nA

M1D
)1/(n-1)

(4)

Re
6:6 ) (6nA

M6:6
)1/(n-1)

(5)

be
1D

Re
6:6

) (13 M6:6

M1D
)1/(n-1)

(6)

U(a, b) ) - 2 ln 2
b

+ Uic
mad(a, b) + 2A

bn
+ CA

an
(7)
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the ions in the second chain is given by multiplying this energy
by NA/nc. If there arencp

q pairs of chains of the type defined by
q, the total electrostatic interaction in all chain pairs of the type
q between all cations in the first chain in any pair with all other
ions is given by a further multiplication byncp

q . The required
total interchain Madelung energyUic

mad(a, b) will be twice the
energy already calculated in order to include the interaction of
all anions, in the first chain in any of the pairs, with all other
ions in the second chain in each pair. Hence,Uic

mad(a, b) is
given by

The numbersncp
q of pairs of chains of the typeq are presented

in Table 1.
The factor NA(2/nc)ncp

1 gives, for 1 mol, the number of
electrostatic interactions between closest ion pairs, so that this
equals the number of short-range repulsions. This provides an
alternative derivation of the coefficientC in eq 7, showing it to
take the value (2/nc)ncp

1 .
It proves useful to introduce the definition of the ratiox of a

to b by

which allows 8 to be written in the form

where

This allowsU(a, b) to be expressed as

SinceMb(x) is dimensionless being, for any given structural type,
a function of solely the variablex, it can be regarded as a
generalization of the Madelung constant that can be called the
Madelung function.

The structures of the nanocrystals are best understood by first
considering optimizing the geometry under the constraint that
a ) b, followed by elucidating any further changes that may
result from removing this constraint. Any such constrained value
of b() a) will be denotedR with theR minimizing U(b, b) ()
U(R)) denotedRe. Noting that, for such constrained geometries,
Mb(x) becomes the constantMb(1) shows that

Application of the condition dU(R)/dR|R)Re ) 0 yields the
relation

which showsRe to be given by

The quantityMR, defined through the second equality (15) as 2
ln 2 + Mb(1) is just the Madelung constant for the constrained
crystal. Division of eq 15 by result 5 for the separationRe

6:6 in
the bulk shows that

The values ofMb(1) evaluated from eq 47, as described in
section 3.1.1, are presented in Table 1. The value for the 2×
1 crystal shows, as expected, that two chains attract, their
interaction energy being-0.116741/R. However, this interchain
attraction is much less than that of- (2 ln 2)/R within a single
chain. Examination of the top part of Figure 1 reveals the
physical origin of this difference. Within any chain, each ion
has two closest neighbors at a distanceRand of opposite charge
with the two closest neighbors of the same charge being located
at the large distance of 2R. However, not only does each ion
have only one oppositely charged neighbor at a distanceR in
the adjacent chain, but also there are two neighbors of the same
charge at a distance ofx2R in the other chain. For 1 mol of 2
× 2 crystal, although there are twice as many closest interchain
attractions of energy-0.116741/R, the total interchain interac-
tion energy is less than twice the value for the 2× 1 crystal
because each pair of chains separated by the distancex2R repel
rather than attract, these contributing+0.02857/R to the
Madelung energy. Examination of the bottom part of Figure 1
reveals the origin of this repulsion, the closest interaction at a
distancex2R being between two ions of the same charge. The
values ofMb(1) in Table 1 show that the ratioM6:6/(2 ln 2 +
Mb(1)), although greater than one, is always closer to unity than
is the fraction (2+ C)/6. It then follows from 16 that the
constrained (Re) equilibrium separation is reduced compared to
that of the bulk. Furthermore, on descending in Table 1, that
is, on passing to nanocrystals with progressively larger cross
sections, the Madelung energy ratio decreases less rapidly than
the increase of the ratio (2+ C)/6. This shows that the fractional
contraction of the constrainedRe from the bulk separationRe

6:6

decreases with increasing nanocrystal cross section. For the 2
× 1 crystal, the dependence onn of ratio 16, equal to
0.58141/(n-1), is shown in Figure 2. Comparison of this result
with that for the 1D chain shows that the latter exhibits the
largest fractional contraction at fixedn. This therefore continues,
to the limit, the trend of increasing fractional contraction with
decreasing nanocrystal cross section.

The direction of the individual changes ina and b which
lower the energy on relaxing the structure from the optimum
constraineda ) b, x ) 1 geometry is determined by the signs
of the two derivatives dU(a, b)/da|b and dU(a, b)/db|a when
evaluated atx ) 1. These derivatives are readily derived from
12 for all values ofx by using the chain rule and noting that
dx/da|b ) 1/b and dx/db|a ) -a/b2. The results are

Re ) ( nA(2 + C)

2 ln 2 + Mb(1))1/(n-1)

) (nA(2 + C)
MR

)1/(n-1)

(15)

Re

Re
6:6

) (2 + C
6

M6:6

MR
)1/(n-1)

(16)

dU(a, b)
da |

b
) - 1

b2

dMb(x)

dx
- nCA

an+1
(17)

dU(a, b)
db |

a
)

2 ln 2 + Mb(x)

b2
+ a

b3

dMb(x)

dx
- 2nA

bn+1
(18)

Uic
mad(a, b))

2

nc
∑

q

(-1)qncp
q ( 1

axq

- 2∑
m)1

∞ (-1)m+1

(qa2 + m2b2)1/2) (8)

x ) a
b

(9)

Uic
mad(a, b) ) -

Mb(x)

b
(10)

Mb(x) )
2

nc
∑

q

(-1)q+1ncp
q ( 1

xxq

- 2∑
m)1

∞ (-1)m+1

(qx2 + m2)1/2) (11)

U(a, b) ) -
2 ln 2 + Mb(x)

b
+ 2A

bn
+ CA

an
(12)

dU(R)
dR

)
2 ln 2 + Mb(1)

R2
-

nA(2 + C)

Rn+1
(13)

2 ln 2 + Mb(1) -
nA(2 + C)

Rn-1
) 0 (14)
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Evaluation of these derivatives at the optimal constrained (x )
1) geometry for whicha ) b ) Re and addition of the results
show that

The last step, showing that the entire quantity 19 vanishes,
follows because the expression on the right of the first equality
sign is nothing but constrained equilibrium condition 14. Result
19 shows that one of the distancesa or b must decrease on
relaxing the structure from the constrained equilibrium geometry
while the other increases. This shows that at least one of these
distances must be less than the separation (Re

6:6) in the bulk
material.

2.3.2. Ratio between the Longitudinal and TransVerse Sepa-
rations. Comparison of ratiox () a/b) with unity will determine
which of the distances contracts on relaxing from the optimum
constrained geometry. An equation forx is derived by writing
the termCA/an in 12 as (1/bn)CA/xn, thus convertingU(a, b)
into a functionU(x, b) of just the variablesx andb. The two
partial derivatives dU(x,b)/db|x and dU(x, b)/dx|b, which are both
zero at the optimal unconstrained geometry for whichb ) be

andx ) xe, are then found from 12 to be

The vanishing of 20 at the relaxed equilibrium geometry shows
that

Substitution of this relation into 21 shows, after noting that this
also vanishes at the relaxed equilibrium geometry, that

Four interesting results plus a further useful inequality can be
deduced from this relation. The useful inequality is that, since
the three quantities (2 ln 2+ Mb(xe)), xe, andC are necessarily
positive, it follows that dMb(x)/dx|x)xe must be negative.

The first main deduction from 23 is that this shows that, given
the structural type of the nanocrystal, the ratio ofa/b is
independent of the strengthA of the short-range cation-anion
repulsion withxe being determined solely by the range of the
potential as defined by the Born exponentn. This range
decreases with increasingn.

The second main deduction from 23 is, as would be expected,
thatxe is not unity for the nanocrystals. This follows after noting
that for the bulk material, which is just the limit of the sequence
of nanocrystals considered in Table 1 for which the planes
consist ofm1 rows and columns asm1 tends to infinity, 23 is
satisfied forxe ) 1 with C ) 4. Considering still the case ofx
) 1, the ratio on the left-hand side of 23 will be different for

different nanocrystals, all these ratios being different from that
in the bulk, and moreover, this ratio will not vary with the
nanocrystal as 1+ 2C-1. The right-hand side (RHS) of 23
depends only on the number of nearest neighbors and involves
terms of short range while the left-hand side originates from
the electrostatic interactions which, being of long range, involve
the interactions of all the ions. These observations show that,
for the nanocrystals, 23 will be satisfied by values ofxe that
are not unity.

The third deduction follows from 23 by noting that while its
left-hand side is independent ofn, the right-hand side contains
xe

n with the exponentn being a number no less than 6. Since it
has already been shown thatxe will not be unity for a
nanocrystal, the right-hand side of 23 will vary much more
rapidly withx for fixed n than will the left-hand side. It therefore
follows that, asn increases, a smaller deviation ofxe from unity
is required to satisfy 23. This means that the relaxation of any
nanocrystal from its optimal constrained geometry defined by
15 will decrease with increasingn.

The fourth deduction from 23 is the determination of the size
of x when compared to unity. This determines whether, on
relaxation from the optimal constrained geometry,a increases
with b decreasing or vice-versa. On passing from the bulk
upward from the bottom through the nanocrystal sequence in
Table 1, the right-hand side of 23 has the values,3/2, 5/3, 7/4, 2,
and 3 for x ) 1. The magnitudes of dMb(x)/dx should be
expected to followMb(x) in decreasing with decreasing nano-
crystal cross section and, moreover, to be roughly comparable
with the Mb(x). This shows that-dMb(x)/dx will be small
compared with 2 ln 2 because the data in Table 1 show that the
Mb(x) values have this property. The values of the left-hand
side of 23 evaluated forx ) 1, therefore, increase more rapidly
with decreasing nanocrystal cross section than does the factor
1 + 2/C already listed. This shows that since, for the bulk, 23
is satisfied withx ) 1 with both sides equal to3/2, the left-
hand side will become progressively larger than the right-hand
side on traversing this sequence ifx is kept at unity. For
example, for the 2× 1 crystal, evaluation of dMb(x)/dx|x)1 from
11 yields-0.426 which taken in conjunction with theMb(1)
value in Table 1 leads to a value of 3.53 for the left side of 23.
Since the right side of 23 containsx raised to the high powern,
increasingx from unity will cause the right side to increase
much more rapidly than the left side of 23 which contains only
inverse powers of geometric parameters. Hence, 23 requires
values ofx, increasingly greater than unity, to be satisfied as
one passes up through the sequence of nanocrystals in Table 1.
It has therefore been shown that relaxation of any nanocrystal
from its constrained equilibrium geometry will causeb to
decrease whilea increases. This result is readily understood
physically as being a consequence of the Coulombic binding
within each chain being much greater than that between different
chains.

2.3.3. Interchain Coulomb Energy and Nanocrystal Relax-
ation. Result 18, when taken in conjunction with both the
corresponding derivatives of relation 2 for energy of a 1D chain,
yields expressions which show how the interchain coulomb
energy varies as the crystal structure is relaxed toward its
equilibrium structure. Division of eq 4 by eq 15 yields

Since the ratioMR/(2 ln 2) is closer to unity than is 2/(2+ C),
result 24 shows that, in any nanocrystal having a cross section

dU(a, b)
da |

a)b)Re

+
dU(a, b)

db |
a)b)Re

)

2 ln 2 + Mb(1)

Re
2

-
nA(2 + C)

Re
n+1

) 0 (19)

dU(x, b)
db |

x
)

2 ln 2 + Mb(x)

b2
-

nA(2 + Cx-n)

bn+1
(20)

dU(x, b)
dx |

b
) - 1

b

dMb(x)

dx
- nCA

bnxn+1
(21)

nA

be
n-1

)
2 ln 2 + Mb(xe)

2 + Cxe
-n

(22)

-
2 ln 2 + Mb(xe)

dMb(x)

dx |
x)xe

) xe(1 + 2C-1xe
n) (23)

be
1D

Re
) ( 2

(2 + C)

MR

2 ln 2)1/(n-1)

(24)
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of two or more chains, its constrained equilibrium separation
Re is greater than thatbe

1D in the 1D system. The observation
that, for all distancesb greater thanbe

1D in the 1D system, the
derivative dU1D(b)/db of 2 will be positive shows that

This shows from 18 that, since dU(a, b)/db|a)ae,b)be is zero,

This is consistent with the deduction from 23 that dMb(x)/dx|x)xe

is negative.
Both result 26 and the established sign of dMb(x)/dx|x)xe are

significant because it follows from 10 that

and

The negative sign of dMb(x)/dx shows that 27 is positive, which
means that the electrostatic energy is raised by an increase of
a. This confirms, as expected, that the chains are bound by their
total mutual Coulombic attraction, as already elucidated in the
discussion after eq 16. However, it follows from 28, when taken
in conjunction with 26, that a decrease ofb which lowers the
total electrostatic energy actually increases the total interchain
electrostatic interaction. This can be understood from Figure 1
(top) from which it is seen that ifb is decreased while keeping
a fixed, the distance between the nearest like pairs of ions in
different adjacent chains is decreased thereby raising the total
interchain electrostatic energy even though these chains still
attract by virtue of the attraction between the closest pairs of
unlike ions in the different chains. Thus, it is the increasingly
negative electrostatic interaction energy-(2 ln 2)/b within the
chains which causes the value ofb to decrease on relaxing a
nanocrystal from its constrained equilibrium geometry. This
energy is significantly greater in magnitude than the total
interchain electrostatic interaction energy as shown by the values
of Mb(1) reported in Table 1 when compared with 2 ln 2.

2.3.4. Ultra-Short-Range Limit of Very High n.The ratiox
will be quite close to unity. This suggests that it is useful to
define the deviation,ε, of x from 1 by

and then to obtain an expression forε correct to first order.
This procedure defines the two constantsG andH through

The derivation of numerical values forG andH is described in
section 3. Introducing both definitions 29 and 30 into 23
transforms this relation into

which on a simple rearrangement yields

It is useful to introduce the two further constants defined by

and

After expressing 32 in terms of the variables defined by 33 and
34 and taking then + 1 root of both sides, a Taylor expansion
of the resulting factor of (1+ k1ε)1/(n+1) to first-order inε yields
the result

Result 35 first shows thatε decreases asn increases so that
x becomes increasingly close to unity with increasingn, thus
confirming the result already deduced from 23. However, 35
immediately shows thatε tends to zero asn tends toward
infinity, thus showing that there will be no relaxation from the
constrained equilibrium geometry in the limit that the ions
behave as hard spheres, this corresponding to infiniten. This
limiting result is not readily deduced directly from form 23.
The development from 32 to 35 is needed because the limit of
largen is not accessible if a Taylor expansion is applied to the
left-hand side of 32 and only the two leading terms are retained.

3. Numerical Results for Structural Trends

3.1. Predictions from the Basic Born Type Model.3.1.1.
Approximate Analytic Equation. A Madelung functionMb(x)
contains one of more infinite sums which are functions of the
one variablet ) qx2. Each such sum, to be denotedS(t), is
defined by

thereby allowingMb(x) to be expressed as

The observation that the largem terms in the sum on the RHS
of 36 tend to (-1)m+1/m, which is just the expansion of ln 2,
suggests thatS(t) might be accurately approximated by the
analytic form

whereD, E, and k are constants to be determined. The exact
results from 36 thatS(0) ) ln 2 andS(∞) ) 0 show that one
must takeD ) 0 andE ) 1 in 38. The value ofk is determined
by demanding that the exact result for dS(t)/dt|t)0 derived from

2 ln 2

b2
- 2An

bn+1
> 0, for all b > be

1D (25)

Mb(xe) +
ae

be

dMb(x)

dx |
x)xe

< 0 (26)

dUic
mad(a, b)

da |
b

) - 1

b2

dMb(x)

dx
(27)

dUic
mad(a, b)

db |
a

) 1

b2(Mb(x) + a
b

dMb(x)

dx ) (28)

x ) 1 + ε (29)

-
2 ln 2 + Mb(xe)

dMb(x)

dx |
x)xe

) G + Hε (30)

G + Hε ) (1 + ε) + 2C-1(1 + ε)n+1 (31)

(1 + ε)n+1 ) C
2

[(G - 1) + ε(H - 1)] (32)

k1 ) H - 1
G - 1

(33)

k2 ) C
2

(G - 1) (34)

ε(1 -
k1k2

1/(n+1)

n + 1 ) ) k2
1/(n+1) - 1 (35)

S(t) ) ∑
m)1

∞ (-1)m+1

(t + m2)1/2
(36)

Mb(x) )
2

nc
∑

q

(-1)q+1ncp
q ( 1

xxq

- 2S(qx2)) (37)

San(t) ) D + E ln 2

(1 + t)k
(38)
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is exactly reproduced by the corresponding result derived by
differentiating 38 with respect tot. This procedure shows that
k must take the value 0.65032557. Although evaluation of sum
39 by direct summation is rapidly convergent, this is not the
case for the original sumsS(t) which were required to derive
the numerical results forMb(1) presented in Table 1. These sums
are most readily evaluated by writing

The sum remaining on the right side of 41 converges rapidly
when explicitly evaluated for the smallt values of interest here
(t e 1.3 × 3x2). The alternative approach of demanding that
38 precisely reproduces the exact result whent ) 1 yields ak
value of 0.6522, very similar to that already deduced.

The pth derivatives of exact form 36 and its analytic
approximation 38 withD ) 0 andE ) 1 are

and

The quantity (2p - 1)!! is defined as 1, 3, 5, ..., (2p - 1). The
agreement of the results of 0.7439, 1.9716, and 7.1971 derived
from 43 at t ) 0 for p ) 2, 3, and 4, respectively, with the
corresponding exact values of 0.7291, 1.8611, and 6.5499
derived by evaluating 42 shows that one can expect the analytic
form for S(t) to be sufficiently accurate for all thet values of
interest that are used both in 23 and in the evaluation of the
first derivative in that relation that only insignificant errors are
introduced into either thexb values thereby derived or those of
the cohesive energies discussed in section 4.

Substitution into 37 of 38 withD ) 0, E ) 1, andk )
0.65032557 yields an analytic result forMb(x) in the form

Introduction of the definitions

and

allows Mb(x) to be written as

which is the basic result of this section. The numerical values
of constantsGx andGq reported in Table 2 enableMb(x) to be
evaluated for all nanocrystals. Since 47 can be analytically
differentiated with respect tox, the eq 23 determiningx can be
written in a closed form which can be readily solved. Result
47 also allows the constantsH, G, k1, andk2 in the linearized
form of 23 (35) to be evaluated.

3.1.2. Solution for Structural Trends.It is of interest to
examine the nanocrystal dependence of the derivatives of the
energy with independent variations ofa andb evaluated at the
constrained equilibrium geometry. These will give an indication
of the relative strengths of the forces driving the crystal away
from the latter configuration. The expressions used to evaluate
dU(a, b)/da|a)b)Re and dU(a, b)/db|a)b)Re are derived by setting
a ) b ) Re in general results 17 and 18 and then using result
14 to eliminate the termsA/Re

n-1 from the derivatives. The result
for dU(a, b)/da|a)b)Re is

The derivation of an expression for dU(a, b)/db|a)b)Re by using
the same procedure yields a result which is just the negative of
eq 48. This provides a very specific illustration of relation 19.
Numerical values for the coefficientKe in each of the nanoc-
rystals are presented in Table 3. Although these coefficients
are independent ofn, the dependence onn in the expression
for Re means that the gradients of 48 are not entirely independent
of n. The result that these gradients increase with decreasing
nanocrystal cross section strongly suggests that the smaller
nanocrystals will exhibit greater relaxations from the optimal
constrained geometry.

The ratiosae/be predicted by numerical solution of 23 with
Mb(x) expressed as in 47 are presented in Table 4 for four
different values ofn. The results confirm the previous analysis
that these ratios are all greater than unity, that they decrease
with increase of bothn and the size of the nanocrystal cross
section. The 2× 1 nanocrystal withn ) 6, the value for LiF,
shows the largest distortion from the bulk, this being almost
11%. This is reduced to 2.9% for the 4× 4 LiF crystal. The 4
× 4 crystal withn ) 12, the value for CsI, shows the smallest
distortion of a mere 0.7%. The fractional contractionsbe/Re

6:6

of the interplane distances relative to the bulk were calculated
from the relation

derived by using 5 to both introduce the bulk separation and to
eliminateA from 22. The results, presented in Table 4, again
show that the fractional contractions ofbe decrease with increase
of eithern or the nanocrystal cross section. These contractions
range from 16% for the 1D LiF system to 1.7% for the 4× 4
CsI crystal. The fractional distortionsae/Re

6:6 of a relative to
the bulk, derived from the results in Table 4 as (ae/be)be/Re

6:6,
are naturally smaller than those of the interplane separations.
However, the results show thatae also is predicted to be
contracted, albeit slightly, relative to the bulk. These fractional
contractions cover a much more narrow range, from 3.4% for
the 2× 1 LiF system to 1% for the case of 4× 4 CsI. Sinceae

dS(t)

dt
) -

1

2
∑
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∞ (-1)m+1
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∑
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is always larger thanbe, the former distance recovers more
quickly toward the bulk separationRe

6:6 as the nanocrystal
cross section increases.

Evidence that the predictions in Table 4 are trustworthy is
provided by the results of ab initio Hartree-Fock computations20

of the electronic structures of 2× 2 LiF nanocrystals. These
were performed with the numbers of planes being progressively
increased until the geometries of the planes near the centers of
the small crystallites remained unchanged on the addition of
further planes. These computations, to be reported in detail
elsewhere, predictedae ) 3.685 au andbe ) 3.458 au, thereby
yielding anae/be ratio of 1.066 in good agreement with that of
1.074 derived from the present Born type model. Furthermore,
both these results are smaller than the separation of 3.789 au
(ref 21) predicted by a Hartree-Fock computation with periodic
boundary conditions for the bulk system. Combination of this
result with that for in the 2× 2 system yields a value of 0.912
for be/Re

6:6, in excellent agreement with that of 0.910 predicted
from the Born type model. The ab initio computations included
not only all the physical effects described in the present
analytical method but also the short-range interactions between
non-nearest ion pairs, of which the anion-anion term will be
the least small, as well as third and higher order multibody
effects of the short-range Lo¨wdin type.22 The agreement of the
analytic model with the ab initio results provides evidence that
the additional effects included in the latter play only a very
minor role in determining the structures of the nanocrystals, at
least for LiF. These computations are also comparable in that
neither of the two sets include the interionic dispersive attrac-
tions.

Further evidence that the present Born model captures the
essential physics is provided by the computation using the GULP
program23 of the structure of a 2× 2 CsI nanocrystal, this being
infinite in extent through the use of the periodic boundary

conditions. The interionic pair potentials required for this
program were computed using the relativistic integrals pro-
gram.24,25This method, after augmentation with descriptions of
both the short-range electron correlation and the interionic
dispersive attractions, has been shown to provide a good
description of bulk ionic crystals26-29 including the delicate
problem of the relative stabilities of the 6-fold and 8-fold
coordinated phases of cesium chloride.30,31 The methodology
is described in the following publications: refs 26, 28, 32, and
33. The computations for the 2× 2 nanocrystal predictedae/be

andbe/Re
6:6 ratios of 0.973 and 1.004 in reasonable agreement

with the Born model values of 0.963 and 1.019. This comparison
is less clear-cut than the one for LiF just described because the
GULP computations included dispersion which is not explicitly
included in the Born model, this only entering the latter
indirectly, if at all, through the derivation of the value of 12
for n from the experimental compressibilities.

The numerical values of the coefficientsk1 andk2 needed to
evaluatexe as 1+ ε using the linearized approximation to 23
(35) are reported in Table 5. For a 4× 4 nanocrystal, this
predicts values of 0.0297 and 0.00722 forn ) 6 and 12,
respectively, in very good agreement with the results of 0.00292
and 0.00716 (Table 4) derived from 23. For 2× 1 nanocrystals,
the corresponding linearized results of 0.10074 and 0.0275 for
n ) 6 and 12 are also in good agreement with those of 0.10687
and 0.0283 derived from 23.

3.2. Influence of the Finer Details of the Cation-Anion
Interaction. 3.2.1. Structural Dependence of the EffectiVe
Cation-Anion Repulsion.It has been assumed that the quantity
A defining the strength of the short-range cation-anion interac-
tion is independent of structure. In this section, the consequences
of any possible such variations and their origins are examined.
It is now well established that, although the properties of cations
in a crystal remain essentially unchanged from those of the free
cation, anions are significantly modified from their free states
on entering a crystal.26,28,32-37 In particular, in-crystal anions
are slightly but significantly compressed relative to free anions.
This compression means that the cohesive energy [U(R)] for x
) 1 is given, in the leading approximation of neglecting both
the interionic dispersive attractions and the short-range interac-
tions between more distant pairs of ions, by

TABLE 2: Coefficients Gq and Gx Yielding the Madelung Function Mb(x) through Equation 47

crystallite Gq Gx

2 × 1 G1 ) 1 1

2 × 2 G1 ) 2, G2 ) -1 (2 - 1

x2)
3 × 3 G1 ) 8/3, G2 ) -16/9,G4 ) -4/3, G5 ) 16/9,G8 ) -4/9 (2 - 2

x2
+ 16

9x5)
4 × 4

G1 ) 3, G2 ) -9/4, G4 ) -2, G5 ) 3, G8 ) -1, G9 ) 1,
G10 ) -3/2, G13 ) 1, G18 ) -1/4 (7

3
- 17

6x2
+ 3

x5
- 3

2x10
+ 1

x13)
TABLE 3: Coefficients Ke of Equation 48

crystallite Ke

2 × 1 0.0754
2 × 2 0.0632
3 × 3 0.0585
4 × 4 0.0230

TABLE 4: Ratios ae/be and be/Re
6:6 for Four Different Values

of Born Exponent n

n ) 6 n ) 9 n ) 10.5 n ) 12

crystallite ae/be be/Re
6:6 ae/be be/Re

6:6 ae/be be/Re
6:6 ae/be be/Re

6:6

1 × 1 0.841 0.897 0.913 0.924
2 × 1 1.107 0.872 1.045 0.922 1.035 0.935 1.028 0.944
2 × 2 1.074 0.910 1.031 0.948 1.024 0.957 1.019 0.963
3 × 3 1.039 0.942 1.016 0.968 1.012 0.973 1.010 0.977
4 × 4 1.029 0.956 1.012 0.976 1.009 0.980 1.007 0.983
bulk 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

TABLE 5: Coefficients k1 and k2 of General Linearized
Equation 35

crystallite k1 k2

2 × 1 4.540 1.266
2 × 2 4.732 1.172
3 × 3 4.910 1.084
4 × 4 5.022 1.059

U(R) ) -
MR

R
+ Ere(R) + (2 + C)Vs(R) (50)
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Here, Ere(R) is the rearrangement energy required to convert
the free anion into its form optimal for the crystal with the
specified geometry whileVs(R) is, for cation-anion separation
R, the short-range energy of interaction of one cation with one
anion measured not with respect to the sum of the energies of
the free ions but with respect to the sum of the free cation energy
and the energy that an isolated anion would have if it had the
wavefunction optimal for the crystal with that geometry.30-33

Result 50 shows that the cation-anion repulsions, which are
represented in the standard Born model asAR-n, are actually
effective potentialsVeff(R) given by

because this definition allows 50 to be written as

It is this form, rather than 50, which is the standard expression
for the cohesive energy in which no rearrangement energy
appears explicitly.

Result 51 shows thatVeff(R) will be structure dependent even
if the individual termsEre(R) and Vs(R) were independent of
structure. The asumption thatVeff(R) can be written in the Born
form AR-n implies that its two components in 51 also take this
form. In the case that these two components are structure
independent and vary asAR-n, the ratioEre(R)/Vs(R) will be a
constant, denoted asf, independent ofR. It then follows from
51 that the termA entering expression 15 for the optimal
constrained nanocrystal geometry will differ from that, to be
designatedA6:6, appearing in result 5 for the separation in the
bulk. It follows from 51 that

Division of eq 15 by eq 5 then yields

Since the quantityC increases with increasing nanocrystal
cross section, 53 shows thatA will increase with decreasing
cross section. It then follows from the presence in 54 of the
additional factor of (A/A6:6)1/(n-1), greater than unity and absent
from 16, that this crystal dependence ofA will act to reduce
the contraction predicted from 16.

More quantitative information can only be obtained by
performing some electronic structure computations which yield
numerical values for eitherVeff(R) or Ere(R) and Vs(R). For a
range of bulk alkali halides, the two latter energies have been
derived by augmenting the predictions computed with the
relativistic integrals program (RIP)24,25 with much smaller
contributions arising from electron correlations of short range.32

The results for both the 6:6 and 8:8 phases of CsCl have already
been reported,30,31while the further results for KCl, RbCl, RbBr,
KI, RbI, and CsI have not yet been published. These computa-
tions showed thatEre(R) is typically about 1-1.5 times larger
than Vs(R) although, of course, the latter makes the larger
contribution toVeff(R) on account of the 2+ C denominator in
51. Furthermore, for many crystals, this ratio is found to be
roughly independent ofR, thereby enabling the constantf to be

defined. For the 1D chain and 2× 1 nanocrystals, for whichC
is respectively zero and unity, ratio 53 takes the values7/5 and
6/5 for f ) 1.5. For the case off ) 3, these ratios are increased
to 5/3 and 4/3. These results then show that distance ratio 54
becomes (0.58828)1/(n-1) and (0.7003)1/(n-1) for the 1D chains
having f ) 1.5 and 3, respectively, while the corresponding
values for the 2× 1 nanocrystal are (0.69761)1/(n-1) and
(0.7751)1/(n-1). These predictions of 54 are compared in Figure
2 with those derived takingA to be independent of structure.
The results illustrate the increase ofRe/Re

6:6 toward unity with
increase off, n, andC.

For each of the 1D chains, for whichRe is designated asbe
1D,

the ratiobe
1D/Re

6:6 predicted from 53 and 54 using the value of
f derived from the RIP computation for theR value near to the
bulk experimental equilibrium is presented in the first line of
Table 6 and plotted in Figure 2. For KCl, RbCl, and RbBr, the
results lie close to the line forf ) 1.5 because the RIP
computations at near equilibrium geometries predictedf to be
1.27, 1.34, and 1.31, respectively. The results for the iodides
lie appreciably below thef ) 1.5 line because the RIP
computations predicted smallerf values of 1.0, 1.1, and 1.3,
respectively. For the 1D chains, it was straightforward to
dispense with the assumption thatf is independent ofb by
evaluatingU1D(b) as a function ofb from the values ofEre(R)
andVs(R) taken directly from the RIP computation for the bulk
material. The resulting predictions forbe

1D/Re
6:6 are presented in

the second line of Table 6. For KCl, RbCl, and RbBr, the results
agree closely with those derived using the constantf assumption
and presented in the first line. Examination of the computed
values ofEre(R) andVs(R) showed that their ratio depended only
very weakly onR. For the iodides, however, this ratio varied
significantly withR, being, for example, in the case of KI, 0.997
at R ) 6.7 au but 0.859 atR ) 7.0 au. Such variations explain
why thebe

1D/Re
6:6 ratios derived using the constantf assumption

do not agree with those computed directly using the RIP results
for all distances.

For the crystals having more than one chain, result 49 forbe/
Re

6:6 is modified in the same way as 54 in the event that the
structural dependence ofA is governed by 53 withVeff(R) taking
the Born form. Thus, 49 acquires the additional factor of (A/
A6:6)1/(n-1) which is introduced from 5 in using this both to
introduceRe

6:6 and to eliminateA from 22. This shows that the
contractions predicted under the constantA asumption are
increased althoughbe/Re

6:6 remains less than unity. For the 2×
1 nanocrystal, the resulting predictions are compared in Table
7 with those derived assumingA to be constant.

The results presented in Figure 2 and Tables 6 and 7 were
derived assuming that bothEre(R) andVs(R) remained unchanged
on passing from the bulk to the nanocrystal. The plausibility of
this assumption can be tested by examining the variations of
these quantities on passing from the 4-coordinated zinc blende
structured polymorphs of the bulk crystals to those having the
rock-salt or cesium chloride structures. Increase of the coordina-
tion number will tend to produce increasingly compressed
anions, leading to greater rearrangement energiesEre(R) but
smaller short-range cation-anion repulsionsVs(R). Such varia-

TABLE 6: Ratio be
1D/Re

6:6 Predicted from 54 and 53 (Born)
with the Constant f Derived from the RIP Computations
Compared with Those (RIP) Deduced Directly without
Taking f to Be Constant

method KCl RbCl RbBr KI RbI CsI CsCl

Born 0.930 0.935 0.940 0.935 0.943 0.951 0.964
RIP 0.933 0.937 0.938 0.924 0.932 0.931 0.952

Veff(R) ) Vs(R) +
Ere(R)

2 + C
(51)

U(R) ) -
MR

R
+ (2 + C)Veff(R) (52)

A
A6:6

) (1 + f
2 + C) 1

1 + f
6

(53)

Re

Re
6:6

) ( A
A6:6

)1/(n-1)(M6:6

MR

2 + C
6 )1/(n-1)

(54)
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tions will tend to reduce the differences between the effective
potentials in different phases of the same material when
compared with those that would arise ifEre(R) andVs(R) were
both phase independent when the phase dependence ofVeff(R)
is caused solely by the factor of 1/(2+ C) multiplying the
rearrangement energy in 51. Although the results30,31 for CsCl
showed that the change inVeff(R) on passing from the 6:6 to
the 8:8 phase was significantly greater than that of its two
componentsEre(R) andVs(R), the opposite was the case for all
the other alkali halides mentioned above because, for these latter
halides, bothEre(R) and Vs(R) were significantly more phase
dependent thanVeff(R). This shows that the results of this section
are certainly relevant to any future measurements of the structure
of the already prepared encapsulated CsCl system.14 However,
for the iodides, for which there is the most experimental data,
the results indicate that the assumption thatA remains unchanged
on passing from the bulk to the encapsulated nanocrystal might
not be less realistic than any derived under the assumption that
it is Ere(R) andVs(R) which remain unchanged.

3.2.2. Significance of the DispersiVe Attractions.The Born
model does not explicitly consider the dispersion forces between
the ions. However, this model includes these implicitly, at least
in some average way, through the introduction of both the
experimental lattice constants andn values derived from the
experimental compressibilities. The purpose of this section is
to examine whether the previous conclusions would be signifi-
cantly modified by explicitly introducing the interionic disper-
sive attractions. The essential features can be revealed by
examining the 1D chain. These attractions are of much longer
range than the short-range cation-anion repulsions. Thus, the
leading, dipole-dipole, terms in the total dispersive attraction
depend on the inverse sixth power of the interionic separations
for distances sufficiently large such that dispersion damp-
ing32,33,38caused by ion wavefunction overlap can be neglected.
It is therefore necessary to consider the dispersive attractions
between all ion pairs and not just the closest neighboring pairs.
In the leading approximation, one considers only the dipole-
dipole dispersive interactions in their undamped form and
neglects the smaller higher order contributions which commence
with the dipole-quadrupole dispersive attractions. The total
interionic dispersive attraction,NAUdisp(R) of 1 mol of a 1D, or
bulk, crystal with geometry defined by the single closest
neighbor separationR is then given by32,33,39

The distanceb in the 1D case is temporarily designated asR so
that the exactly comparable equations can be written for the
1D and bulk systems. In 55,C6(XY), where X or Y can be
either cation C or anion A, is the distance independent dipole-
dipole dispersion coefficient which yields the attraction of one
ion of type X with one of type Y separated by a distancerXY as

-C6(XY)/rXY. Each dimensionless coefficientS6(XY) is the sum
of the inverse sixth powers of the distances of all ions of type
Y from one ion X, with all distances scaled such thatR is unity.
Thus,-S6(XY)C6(XY)R-n is the total dispersive attraction of
one ion of type X with all other ions of type Y in the crystal.
For any cation in the 1D chain, one anion is located at all
distances which are odd multiples of the basic separationR, so
that there are two such anions for any given distance defined
regardless of direction. Similarly for any ion of type X, another
ion of the same type is located any distance which is an even
multiple of R. This shows that

and

For the bulk rock-salt structure, it is a long established standard
result thatS6(CA) ) 6.5952 and thatS6(CC) ) S6(AA) )
1.8067.33,39It is useful to introduce the quantitiesT6 defined as

It follows from the above values of theS6(XY) coefficients that

and

The coefficients of 58 are useful because these enable the total
cohesive energy to be expressed in the form

This differs from the expression for the cohesive energy of a
nanocrystal in any constrained (x ) 1) structure only in that
the non-Coulombic interactionAR-n between nearest neighbor
ions has been replaced by an effective interactionAR-n - T6R-6.
For the 1D and bulk crystals, the factor 2+ C reduces to 2 and
6, respectively, just the coordination number of each ion.
Differentiation of 61 with respect toR, equating the result to
zero and then writing one resulting piece, (nA(2 + C))/Re

n+1,
in terms of the remainder yields the relation

Division of this result for the 1D chain by the corresponding
result for the bulk yields

where Re for the 1D chain has been redesignated asbe
1D.

Comparison of this result with the corresponding ratio
(1/3)M6:6/(2 ln 2) predicted without considering the dispersion

TABLE 7: Ratio of be/Re
6:6 Computed for the 2 × 1

Crystallite Chain for Three Different Values of Born
Exponent n and Parameter A Corresponding to f ) 0, 1.5,
and 3

be/Re
6:6

n A2×1 ) A A2×1 ) 6/5A A2×1 ) 4/3A

9 0.922 0.944 0.956
10.5 0.935 0.953 0.964
12 0.944 0.960 0.969

Udisp(R) ) -R-n(S6(CA)C6(CA) +

1
2
{S6(CC)[C6(CC) + C6(AA)] }) (55)

S6
1D(CA) ) 2∑

n)1

∞ 1

(2n - 1)6
) 2.0029 (56)

S6
1D(CC) ) S6

1D(AA) ) 2∑
n)1

∞ 1

(2n)6
) 0.0318 (57)

T6 )
S6(CA)C6(CA) + 1

2
(S6(CC)[C6(CC) + C6(AA)])

2 + C
(58)

T6
1D ) 1.00145C6(CA) + 0.00795[C6(CC) + C6(AA)] (59)

T6
6:6 ) 1.0092C6(CA) + 0.1506[C6(CC) + C6(AA)] (60)

U(R) ) -
MR

R
+ (2 + C)[AR-n - T6R

-6] (61)

Re
n-1 )

nA(2 + C)

MR + 6(2 + C)T6Re
-5

(62)

(be
1D

Re
6:6)n-1

) 1
3

M6:6 + 36T6
6:6(Re

6:6)-5

2 ln 2 + 12T6
1D(be

1D)-5
(63)
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is achieved by defining the quantityδ as

It then follows that one can write

which will be greater thanM6:6/(2 ln 2) if δ is positive. Since
the dispersion is not the major term, it is sufficient to evaluate
the ratio in 64 by using result 6 derived by considering only
the Madelung and short-range repulsion. The smallest value
predicted for the ratio (be

1D/Re
6:6)5 is 0.4843, which is the result

for n ) 7. This shows that 3(be
1D/Re

6:6)5 must be greater than
1.4529, which shows that 3(T6

6:6/T6
1D)(be

1D/Re
6:6)5 must also be

greater than 1.4529 because it follows from results 59 and 60
thatT6

6:6 is greater thanT6
1D. Since this value is greater than that

1.2606 ofM6:6/(2 ln 2), it follows thatδ is positive and, hence,
that the ratio of distances 63 will be greater than that predicted
without considering the dispersive attractions.

The cohesive energiesU1D(b) were calculated as function of
b by using the RIP values ofEre(R) andVs(R) computed for the
bulk with theC6(XY) dispersion coefficients derived from the
Slater-Kirkwood formula via the experimental molar polariz-
abilities, as described elsewhere. These computations included
the dispersion damping32,33,38as well as the dipole-quadrupole
dispersive attractions, both evaluated as previously discussed.31

The resulting predictions forRe/Re
6:6, plotted in Figure 2, are

seen, as predicted from the above analysis, to be closer to unity
than those derived without considering dispersion. The differ-
ences are greater for the RbI and CsI because these species have
the largest dispersive attractions.

4. Global Analysis of the Cohesive Energetics
The total binding energyU(a,b) of each nanocrystal expressed

as a ratio to that of the bulk is readily derivable from the present
theory. This also enables one to calculate the energy gains in
the different stages of relaxing the nanocrystal to its equilibrium
geometry, all measured relative to the bulk lattice energy. These
energy ratios can be converted into absolute values simply by
invoking the experimental values for the bulk lattice energies.
For CsI, only the lattice energy of its most stable phase, that
having the 8-fold coordinated CsCl structure, is known experi-
mentally. However, computations using the RIP predict that the
lattice energy of the 6:6 phase is only 6 kJ/mol less than that
(610 kJ/mol18) of the 8:8 structure, a prediction qualitatively
similar to the experimental (5.6 kJ/mol40,41) difference between
the energies of these two phases of CsCl. Hence, using the lattice
energy for the 8:8 structure will only introduce errors of about
1% into the absolute energies to be presented for nanocrystalline
CsI.

Equilibrium condition 14 applied to the bulk for which
2 ln 2 + Mb(1) ) M6:6 andC ) 4 yields

Substitution of this result into 12 evaluated for the bulk witha
) b ) Re

6:6 yields the standard result for the bulk cohesive
energy

The cohesive energyU(Re
6:6) of the nanocrystal evaluated at

the equilibrium geometry of the bulk, a constrained structure
with a ) b ) Re

6:6, is found, from 12 after using 66 to eliminate
A, to be given by

Division of this result by eq 67 yields

This shows, in the hard sphere limit (n f ∞), that the ratio of
the binding energies is just that of the Madelung energies. These
become more negative as the cross section of the nanocrystal
increases toward the bulk value. This fractional loss of cohesive
energy decreases with decreasingn because the number of short-
range repulsions in the smaller nanocrystals is less than that
from the six neighbors in the bulk. The quantitative results are
presented in the first three numerical columns in Table 8.

The cohesive energyU(Re), at the relaxed but constrained (x
) 1) optimum geometry of the nanocrystal, is given by an
expression differing from 67 only in the replacement ofM6:6

by MR and of Re
6:6 by Re. Division of this result by eq 67

followed by invoking 16 to eliminate the ratio of the equilibrium
distances yields

The numerical values of this ratio, presented in the three right
most columns of Table 8, show, when compared with the
corresponding values ofU(Re

6:6)/U6:6(Re
6:6), that the energy

gains on relaxation decrease both with increasingn and
nanocrystal cross section. These relaxations occur because the
reduction in the magnitude of the attractive Madelung terms
on passing from the bulk to the nanocrystal is less than that of
the short-range repulsions, reduced by virtue of the lower
coordination number.

For any actual nanocrystal, a numerical value for the energy
gained through relaxation (Erelax), equal to the difference

3T6
6:6(Re

6:6)-5

T6
1D(be

1D)-5
) 3

T6
6:6

T6
1D(be

1D

Re
6:6)5

)
M6:6

2 ln 2
+ δ (64)

M6:6 + 36T6
6:6(Re

6:6)-5

2 ln 2 + 12T6
1D(be

1D)-5
)

M6:6(1 +
12T6

1D(be
1D)-5

2 ln 2 ) + 12T6
1D(be

1D)-5δ

2 ln 2 (1 +
12T6

1D(be
1D)-5

2 ln 2 )
(65)

A

(Re
6:6)n

)
M6:6

6nRe
6:6

(66)

TABLE 8: Ratios Relative to the Bulk of the Energies of
Nanocrystals, UnrelaxedU(Re

6:6)/U6:6(Re
6:6) and

RelaxedU(Re)/U6:6(Re
6:6), to the Constrained (a ) b)

Equilibrium Geometry

U(Re
6:6)/U6:6(Re

6:6) U(Re)/U6:6(Re
6:6)

crystallite n ) 6 n ) 10.5 n ) 12 n ) 6 n ) 10.5 n ) 12

1 × 1 0.8853 0.8417 0.8351 0.9435 0.8691 0.8583
2 × 1 0.9321 0.8980 0.8928 0.9586 0.9106 0.9036
2 × 2 0.9593 0.9362 0.9327 0.9691 0.9409 0.9367
3 × 3 0.9748 0.9592 0.9569 0.9787 0.9611 0.9585
4 × 4 0.9838 0.9719 0.9701 0.9859 0.9729 0.9710

U6:6(Re
6:6) ) -

M6:6

Re
6:6(1 - 1

n) (67)

U(Re
6:6) ) - 1

Re
6:6(MR -

M6:6(2 + C)

6n ) (68)

U(Re
6:6)

U6:6(Re
6:6)

)

MR

M6:6
- 2 + C

6n

1 - 1
n

(69)

U(Re)

U6:6(Re
6:6)

)
MR

M6:6
( 6
2 + C

MR

M6:6
)1/(n-1)

(70)
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U(Re
6:6) - U(Re), can be derived by subtracting the numerical

value of 69 from that of 70 and then multiplying by the
experimental lattice energy. Results for LiF, KI, and CsI, for
which n takes the values of 6, 10.5, and 12, respectively, are
presented in Table 9. Although these energy gains are ap-
preciable for the smaller nanocrystals, particularly for LiF, they
decrease rapidly with increase of bothn and crystal size until
becoming small for the 3× 3 and 4× 4 CsI systems. The
difference (∆De) between the total lattice energy of any
nanocrystal and that of the bulk can be derived by subtracting
from unity the ratioU(Re)/U6:6(Re

6:6) and then multiplying by
the experimental bulk lattice energy. The results, presented in
Table 9, show that the greatest fractional energy losses arise
for large values ofn for which, as already shown, relaxation
produces the least energy gain.

The removal of the constraintx ) 1 relaxes the nanocrystal
to its true minimum energyU(ae, be). The derivation of the ratio
of this energy to that of the bulk is facilitated by defining the
quantityy by

Cohesive energy expression 12 evaluated at the equilibrium
geometry can be written in terms of this variable as

After using 66 to eliminateA and then dividing the result by
67, one obtains

The numerical values of this ratio for 2× 1 and 2 × 2
nanocrystals are presented in Table 10. An absolute value for
the energy,U(Re) - U(ae, be), gained on relaxation from the
optimal constrained (x ) 1) structure is derived by subtracting
the value ofU(Re)/U6:6(Re

6:6) presented in Table 8 from the
corresponding ratioU(ae, be)/U6:6(Re

6:6) in Table 10 and then

multiplying by the experimental lattice energy. The results for
LiF, KI, and CsI are presented in Table 10. The results show
that these energy gains range from the small, for LiF, to the
almost insignificant, for 2× 2 crystals of both KI and CsI.

The ab initio quantum chemistry computations, described in
the last section, for finite sized pieces of the 2× 2 nanocrystal
also provide evidence for the reliability of the predictions from
the Born model. The results showed that the energy gain on
making 1 mol of new contacts in a process of the typem(LiF)2

+ p(LiF)2f (m + p)(LiF)2 was essentially constant at 224 kJ/
mol of planes being independent ofmandp.20 Here, the species
m(LiF)2 consists ofm of the planes containing two cations and
two anions. An independent computation42 for the m ) p ) 1
case yielded the same result. A 1 mol portion of LiF stoichio-
metric formula units of the 2× 2 nanocrystal can be constructed
from its constituent gas-phase ions by first formingNA/2 single
(LiF)2 planes and then assembling these planes, the latter process
releasing 112 kJ/mol of formula units. Addition of the 887.2
kJ42 computed for the heat of formation of theseNA/2 isolated
planes predicts the lattice energy of the 2× 2 nanocrystal to
be 999 kJ/mol. This agrees well with the value of 1006 kJ/mol
derived by combining the Born model lattice energy ratio
presented in Table 9 with the experimental bulk value of 1036
kJ/mol.19

5. Discussion

The elucidation through microscopy of the structures of both
2 × 2 (ref 10) and 3× 3 crystals11 of KI as well as that of 3
× 3 RbI and 2× 2 CsI crystals,12 all encapsulated in singled
walled carbon nanotubes of appropriate sizes, provided no
evidence that thexyplane cross sections of any of these materials
were not square. The separationsbe were measured to be 0.346,
(0.695/2), 0.36, and 0.37 nm (or in atomic units: 6.538, 6.567,
6.803, and 6.992 au). These should be compared with spacings
Re

6:6 in bulk KI, RbI, and CsI of 6.676, 6.937 (ref 43), and
7.210 au (ref 44), respectively, at room temperature, that ambient
in the experimental determination of the nanocrystal structures.
The ratios be/Re

6:6 derived from this experimental data are
compared with the predictions of the present Born model in
Table 11. The results in the second column were derived taking
account of any difference between theA factors of the
nanocrystal and those of the bulk using the approach described
in section 3 based on the assumptions that the individual terms
Vs(R) andEre(R) are independent of structure with ,furthermore,
their ratio being a constantf independent of interionic distance.
The arguments of the type leading to result 54 then show that
any differences between theA parameters in the nanocrystals
and in the bulk will cause thebe/Re

6:6 predictions derived taking
A ) A6:6 to be multiplied by the factor (A/A6:6)1/(n-1). The
respectiveA/A6:6 ratios of 15/14, 51/49, 1.0592, and 1.0928 for

TABLE 9: Energies (Erelax ) U(Re
6:6) - U(Re)) on Relaxing

to the Constrained (a ) b) Equilibrium Nanocrystal
Geometries and Differences (∆De ) U(Re) - U6:6(Re

6:6))
between the Bulk and Nanocrystal Lattice Energies (in
kJ/mol)

LiF (De ) 1036)19 KI (De ) 649)19 CsI (De ) 610, see text)

crystallite Erelax ∆De Erelax ∆De Erelax ∆De

1 × 1 60.3 58.5 17.8 85.0 14.2 86.4
2 × 1 27.5 42.9 8.2 58.0 6.6 58.8
2 × 2 10.2 32.0 3.0 38.4 2.4 38.6
3 × 3 4.0 22.1 1.2 25.2 1.0 25.3
4 × 4 2.2 14.6 0.7 17.6 0.6 17.7

TABLE 10: Ratios of U(ae, be)/U6:6(Re
6:6) of Lattice Energies

of the Fully Relaxed Nanocrystals Relative to the Bulk and
Nanocrystal Energies Gained (U(Re) - U(ae, be)) on Relaxing
the a ) b Constraint (in kJ/mol)

U(ae, be)/U6:6(Re
6:6) U(Re) - U(ae, be)

crystallite n ) 6 n ) 10.5 n ) 12 n ) 6 n ) 10.5 n ) 12

2 × 1 0.9613 0.9114 0.9042 2.8 0.52 0.37
2 × 2 0.9707 0.9414 0.9371 1.7 0.32 0.24

y )
be

Re
6:6

(71)

U(ae, be) ) -
2 ln 2 + Mb(x)

yRe
6:6

+ (2 + Cx-n)
A

(yRe
6:6)n

(72)

U(ae, be)

U6:6(Re
6:6)

) (2 ln 2 + Mb(x)

yM6:6
- 2 + Cx-n

6nyn ) 1

1 - 1
n

(73)

TABLE 11: Comparison between Theoretical and
Experimental Values of the
Fractional Longitudinal Contractions be/
Re

6:6 and the Absolute Longitudinal Spacingsbe
a

be/Re
6:6 be

crystallite A ) A6:6 A ) fA6:6 exp A ) A6:6 A ) fA6:6 exp

KI (2 × 2) 0.957 0.964 0.979 6.389 6.436 6.538
KI (3 × 3) 0.973 0.977 0.984 6.496 6.522 6.566
RbI (3× 3) 0.975 0.980 0.981 6.762 6.801 6.803
CsI (2× 2) 0.963 0.971 0.969 6.943 6.999 6.992

aThe theoreticalbe values are derived frombe/Re
6:6 multiplied by the

experimentalRe
6:6. The values off are derived from RIP computations,

as described in the text.
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the four encapsulated systems were derived from 53 using the
values of unity, 1.1, and 1.1 for thef factors of KI, RbI, and
CsI, these being reasonable averages of the RIP results for near
equilibrium geometries. The resulting predictions forbe/Re

6:6

presented in column 2 were derived takingn to be 10.5, 11,
and 12 for KI, RbI, and CsI, respectively. The predictions for
be were derived as the product of the theoreticalbe/Re

6:6 and the
experimental bulkRe

6:6. The theoretical predictions in Table 11
are entirely consistent with the experimental results in view of
the (0.02 nm ((0.38 au) precision10-12 of the measured
distances. Thus, there is no evidence that the observed contrac-
tions have any cause other than those of the interplay between
the point Coulombic attractions and near neighbor short-range
repulsions elucidated here for the free nanocrystals. The
predictions derived taking account of the structural dependence
of A do seem to be in slightly better agreement with the
experiment than those derived takingA ) A6:6 although the
experimental precision means that it cannot be stated that the
latter are not also consistent with the experiment.

The prediction from Table 4 that theae/be ratios for all three
systems are greater than unity, being 1.024, 1.012, 1.011, and
1.010, respectively, is consistent with the values of 1.156, 1.065,
1.083, and 1.108 derived from the experimentally measured10-12

ae values of 0.4, 0.37, 0.39, and 0.41 nm (or in atomic units:
7.559, 6.992, 7.370, and 7.748 au). This shows that the
observation of the gross results that theae/be ratios are greater
than one is a property of the nanocrystal itself and is explicable
from the present theory and that ratios greater than one are not
therefore caused by interaction with the wall. However, the result
that the ae/be ratios predicted for the free nanotube are
significantly less than the experimental values, even though all
ratios are greater than one, strongly suggests that interactions
with the nanotube walls are significant. This conclusion agrees
with the finding of a previous study15,16of the encapsulated KI
system, which used empirical potentials, that the computedae/
be ratios were greater than unity but less than experimental
values without considering interactions with the wall. It should
be noted that the computedae/be ratio only agreed quantitatively
with experimental value if the nanotube was considered to be
surrounded by molten salt. However, there was no such molten
salt surrounding the nanotubes during the measurements of their
structures. The importance of ion-wall interactions in the
determination ofae is reinforced by the predictions, derived from
the results in Table 4, thatae/Re

6:6 is 0.978, 0.985, 0.992, and
0.982 for the three encapsulated crystals. These values, being
less than unity, are not consistent with the experiment because
each of the lattera values is greater than the corresponding bulk
separationRe

6:6. Furthermore, even after introducing the factor
of (A/A6:6)1/(n-1) arising on considering the structural dependence
of A, the ratios of 0.982, 0.989, 0.998, and 0.990 predicted for
ae/be remain less than unity.

6. Conclusions

This paper has presented a theory of the structure, energetics,
and relationships between nanocrystals generated as small
sections of ionic crystals having the rock-salt structure. These
nanocrystals consist ofm1 rows andm2 columns of ions of
alternating charges, the columns being infinite in extent along
the 〈001〉 z direction. The theory, based on the assumption that
these crystals are fully ionic, focuses only on the largest and
most important terms, namely, the Coulombic interactions
between the ions treated as point charges and the short-range
repulsive interactions between just immediately neighboring
ions. The latter interactions were described in the original Born

form Ar-n. The structures of such nanocrystals are defined by
the distancesa and b between closest ions respectively
perpendicular and parallel to thez direction.

The shapes of the nanocrystals, defined by the ratioae/be,
were shown to be independent of the strengthA of the short-
range repulsion. Furthermore, their sizes relative to the bulk,
as defined by the ratiobe/Re

6:6 were also found to independent
of A if this was taken to independent of structure. Hence, the
only property of this repulsion which governs any of these ratios
is the rangen of the repulsion, this decreasing with increase of
n. This shows that the chemical dependence of the structures is
determined solely byn. Both the ratiosbe/Re

6:6 andae/Re
6:6 were

shown to be less than unity withae/be being larger than one.
All these ratios were shown to become closer to unity on
increase of eithern or the crystal cross section as defined by
the numbers of rows and columns. Thus, the structure reduces
to that of the bulk either asn tends to infinity or as bothm1 and
m2 tend to infinity, the former corresponding to the limit in
which the ions behave as hard spheres. The result that the
Madelung binding within a single chain is much greater than
that between different chains, even for those immediately
adjacent, explains whybe is less thanae even for the systems
of a 2 × 1 cross section in which each ion experiences two
intrachain short-range repulsions but only a single interchain
short-range repulsion.

The Born repulsion is actually an effective repulsion com-
posed of contributions from the true short-range repulsionVs(b)
and the rearrangement energy required to convert a free anion
into its form optimal for a crystal with the specified geometry.
The A parameter was shown to increase with decreasing
nanocrystal cross section if the two components of the effective
repulsion were structurally independent. Although the predicted
ratios be/Re

6:6 and ae/Re
6:6 were shown to be increased on

considering such structural dependence ofA, the prediction that
these ratios are less than one remained unchanged. Theae/be

ratio remains unaffected by any variation ofA between the bulk
and the nanocrystal because this ratio is a property solely of
the latter. For the single chain system, it was possible to
introduce explicitly the interionic dispersive attractions rather
than allowing these to be considered only implicitly, as in the
Born model, through the introduction of both experimental
interionic separations and the use ofn values determined from
experimental compressibility measurements. It was shown that
such explicit introduction of the dispersive attractions increased
the predicted ratio ofbe/Re

6:6 although this still remained
significantly less than unity.

It was shown that it is useful to consider relaxing the
nanocrystal to its equilibrium structure in two stages from an
initial configuration in which the interionic separations equal
those of the bulk. In the first of these, the nanocrystal is relaxed
under the constraint thata ) b ) Re, this constraint being
removed in the second stage. The ratioRe/Re

6:6 was shown to be
less than one and to increase toward unity as eithern or the
nanocrystal cross section is increased. This ratio decreases with
reduction of the nanocrystal cross section because, for fixedR,
the number of short-range repulsions decreases more rapidly
than does the magnitude of the attractive Madelung term. The
energy gained in each of these two stages decreases with
increase of crystal cross section andn, there being no energy
gain in the hard sphere limit of infiniten. The energy gained in
the first stage is very much greater than that in the second stage,
even the largest value for the latter being only some 3 kJ/mol
for a 2× 1 LiF nanocrystal. For the 2× 2 and 3× 3 KI systems,
these energy gains of 0.5 and 0.3 kJ/mol, respectively, are still
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less than those of 3.0 and 1.2 kJ/mol in the first stage. Although
even the latter energy gains are quite modest, they become more
significant for the smaller crystals with lown.

The first of four principle insights revealed by the present
work is that the experimentally determined values forbe are
entirely consistent both qualitatively and quantitatively with the
predictions of the present theory. There is therefore no evidence
that the encapsulating nanocrystal plays any role in determining
this parameter which has therefore been shown to emerge from
the interplay between just the two largest interactions within
the nanocrystal. However, although the present theory correctly
predicts thatae is greater thanbe, the measured ratios ofae/be

are significantly greater than the present predictions and,
furthermore, the measured distancesae are greater than theRe

6:6

values of the bulk in contradiction to the prediction thatae/Re
6:6

is less than one. This suggests very strongly that interaction
with the nanotube wall plays a significant role in determining
this parameter, a topic to be addressed elsewhere.

The second main physical insight from the present work is
that the molar binding within a single chain of infinite length
is significantly greater than that between the chains, thereby
explaining why the ratio ofae/be is greater than unity even in
the absence of any encapsulation. This renders fully transparent
the third conclusion that the distancebe is contracted relative
to the bulk as a consequence of the greater intrachain binding,
the fractional reduction of the Madelung energy on passing from
the bulk to a nanocrystal being much less than that of the short-
range cation-anion repulsion. The fourth insight revealed by
the present work is that the ratiosae/be depend only on the range
of the short-range repulsion as defined by the Born exponentn
and not on the strength as manifested by theA parameter.
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