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This paper presents a general theory elucidating the relationships between the structures and cohesive energetics
of alkali halide nanocrystals consisting of small sections of bulk rocksalt structuresnyvathdm, rows but

infinite along thez axis. The theory introduces the electrostatic interactions between the ions treated as point
charges and the short-range repulsions between the closest ion neighbors with the latter terms written in the
Born form Ar~". Minimum energy structures are defined by the distamg@ndb, separating the closest ions
perpendicular and parallel to tlzalirection. The ratiad/be, defining the crystal shape, is independent of the
strengthA of the short-range repulsion, greater than the bulk value of unity, and increases with decrease of
the crystal cross section ar This ratio tends toward unity in the hard sphere limit of infimteBoth be/Rg’6
anda/R%®, with the bulk separatioR%®, are less than one, increase with increase of the crystal cross section

or n, and are independent &fif this is independent of structure. The structural dependenceinéreases

its value with a decreasing crystal cross section rendering closer to unity theaiio®/RS®, andad/RE®.

Energy gains on relaxing the crystal toward equilibrium from its bulk separations decrease with increase of
the crystal cross section oy being about 60 kJ/mol for a one-dimensional chain wits 6 but 0.5 kJ/mol

for m; = mp, = 4 with n = 12. The energy gained on relaxing to a structure \aifh. constrained at unity

is about 10 times greater than the further energy gains consequent on removing this constraint. The present
theory neglecting the interaction between ions and the encapsulating nanotube explains the experimentally
measurech/RS® ratios. The observation that th/RE® values are greater than one shows that-mall
interactions are important in determining the valuesof

1. Motivation b

Single walled carbon nanotubes (SWNTSs) are ideal nano-
metric objects which facilitate the formation of low-dimensional
ordered structures within their cavity. Filling materials delib-
erately introduced in SWNTs range from single elements, a
specifically, heavy metals such as R8j,2 Ag,® Au, Pt, and
Pd* to molecules such as fullerene%,metal oxides, and
halides®13 The main interests of filing SWNTSs are to enforce
the encapsulated material to adopt a low-dimensional morphol-

ogy and to produce templates for atomically regulated low-
dimensional crystal growtH. Recently, the crystal growth
behavior of ionic solids in SWNTs, and especially of single L "

binary alkali halides such as KI, has been thoroughly investi-
gated both experimentally 2 and theoreticall}>17 The

experimental studies revealed that the structures of the encap- ;

sulated crystals were systematically distorted from those of the ~— b —

bulk, while the theoretical studies, using mainly molecular Q 3 a
dynamics simulations, yielded valuable insights into the possible 7~ """ + """""" —

mechanisms of crystal growth inside a SWNT.

In this paper, a general analytical theory for the structures
and energetics of nanocrystalline ionic solids is presented. ThEFigure 1. Structures of 2x 1 (top) and 2x 2 (bottom) nanocrystals,
aim is not only to present a comprehensive mathematical infinite along thez direction, showing one unit repeat.
formulation but also to provide physical insights into the of ions with alternating cations and anions in each row. The
resulting predictions. The paper is concerned with structures of geometry of such a crystal is defined after specifying both the
the alkali halides encapsulated with @1 direction parallel distanceb between the successive planes encounted on increas-
to the nanotube axis. Although such crystals are, in principle, ing the z coordinate and the distan@ebetween neighboring
infinite in extent along the direction, a view along this direction ions in the same plane. These coordinates are depicted in Figure

will show a small plane consisting afy rows andm, columns 1. Understanding these structures first requires that one disen-
tangles the effects which arise solely from the finite extent of
* Corresponding author. the crystal in two of the directions from any further effects
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TABLE 1: Coefficients Determining the Interchain Electrostatic and Repulsion Energies

repulsion energy

Madelung energy

crystallite Ne C Mp(1) q i
2x1 2 1 0.116741 1 ni,=1
2x2 4 2 0.204910 1,2 =4, =2
P roen
3x3 9 93 0.259785 1,2,4,5,8 N, = 12,15, = 8,n¢, = 6,n%, = 8,n], = 2
4x4 16 3 0.289080 1,2,4,5,8, Nl =24 = 18,0t — 1615 — 24
op = 24,Ng, = 18, NGy = 24,
110,13, 18 ng, = 8,Ngp =8, nzr?: 12,n=8,np=2
bulk o 4 0.361270

generated from explicit interactions between the encapsulatedenergy, which in turn determines the structure of the nanoc-
ions and the nanotube wall. The answering of this question raisesrystals in the absence of interaction with the encapsulating
the possibility that the nanotube plays no role beyond that of nanotube. The simplest yet still mathematically tractable overall
an essentially passive spectator which simply constrains theaccount of the structures and cohesive energetics of such crystals
crystal geometry by defining the numbers; (@ndmy) of rows is therefore developed by including only these two terms. The
and columns in the planes. In this event, the wall would provide need for avoiding excessively complicated and possibly intrac-
no more than a potential of the square well type in which the table mathematics dictates that the short-range repulsion between
interaction with any ion is zero unless it directly encounters two ions separated by a distances taken to have the original

the wall in which event the interaction is sufficiently large as Born form A/r" rather than the possibly more accurate Born

to expel the ion from the immediate vicinity of the wall. Mayer expressiof® It is now well establisheld from measure-
Disentangling the effects of ierwall interactions from those = ments of the compressibilities of a wide range of essentially
generated solely by the reduced dimensionality of the crystalsionic crystals that the Born exponemis the average of inde-
requires that one understands the structures and energetics gbendent cation and anion contributions. The contribution from
isolated crystals of the type shown in Figure 1, which, therefore, an ion having a Zpoutermost electronic configuration is 7; those
form the main subject of the present investigation. The over- from ions having such configurations of 8gip?, and 5§ are
arching objective of this paper is therefore to develop a general 9, 10, and 12, respectively, while thefL¢ontribution is 5.

theory which explains the inter-relationships between both  For any of the nanocrystalline alkali halides, the individual
crystals differing only in the numbem) of rows and columns planes will necessarily be square in cross section in the lowest
in the planes and between crystals having the samieut energy structure because there is no mathematical distinction
chemically different ions. Such a theory must also expose the between the cations and anions in the present Born type model.
relationship between the nanocrystals and the bulk material The geometry is therefore defined by just the two parameters
having the rock-salt structure, thereby showing how the proper- andb defined in section 1. For a nanocrystal containing 1 mol
ties of the nanocrystals evolve toward those of the bulk as the of stoichiometric formula units and with geometry thus defined,
number of rows and columns in the planes is increased. Thethe total crystal cohesive eneryU(a, b), negative for a bound
initial step in generating a physically transparent yet general crystal and measured relative to the sum of the energies of the
theory of all such nanocrystals is to consider only the dominant free isolated ions, is given by

interactions. These are the electrostatic interactions between the
ions considered as point charges and the short-range repulsive
interactions between each cation and just its immediately
neighboring anions. This approach not only ensures that the
theory will be ma.thematically_tractable and appear in a relativgly Here,Na is Avogadros number so thalUmad@, b) is the total
simple form bgt is alsq provides the benchma'rk against which Madelung energy of 1 mol. The termA®" describes the
the effects of introducing further but smz_aller interactions can repulsion experienced by any one ion with its two neighboring
be gauged. Such a theory should ideally incorporate the effects;, i the same chain. The constadiis defined such that
of chemical variation of the ions through a very small number NACA/a" is, for 1 mol, the sum of all the short-range repulsions

of parameters defining the short-range interactions. The present onveen ions in neighboring chains. Numerical values of these

theory can therefore be regarded as the natural extension, tG,qnstants are reported in Table 1. For systems, such assthe 2
nanocrystals, of the classic Born descriptfosf bulk materials. 2 nanocrystal or a bulk cubic crystal, in which all the chains

are located in the same environment, the cons@rns$ the
number of anions located at distanadrom any one cation,

2.1. Basic Definitions.The Born model8 although semiem- any such anion being in a neighboring chain. Thus, for such
pirical, provides the simplest satisfactory overall account of the systems,C equals the coordination number minus 2. The
cohesion of bulk ionic crystals. This emerges as the balancederivation ofC for systems in which not all the chains are in
between the overall Coulombic attractions of the ions, treated the same environment can be illustrated by considering 1 mol
as point charges, and the short-range repulsive forces betweernf a 3 x 3 nanocrystal, this havinya/9 cations in each chain.
the closest pairs of ions. The latter interactions, maintaining Each cation at the center of one of the planes, having also cations
the crystal at equilibrium against the attractive point coulomb at the four corners, experiences repulsion from four anions, so
term, can, conceptually, be taken to include all effects arising that all such cations contributeN4/9 repulsions to the molar
from the finite spatial extension of the ions. These include not energy. Although each cation at the corner experiences only
only the overlap induced repulsion that is ultimately a purely two such repulsions, there are four such cations, so that all these
quantum effect originating from the Pauli principle but also any cations contribute8,/9 repulsions to the molar energy. Planes
modifications of the purely electrostatic interactions. These two of the neighboring type contain only cations at the middle of
interactions, namely, the point Coulombic and the short-range the edges, there being four such ions. Since each of these
repulsion, will also make the largest contributions to the cohesive experiences three repulsions, all such ions contribubé, /2

2A CA) 1)

N,U(a, b) = NA(Umac(a, )55+ =

2. Analytic Deduction of Overall Structural Trends
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repulsions to the molar energy. The total number of repulsions 1 T T T T
from cations in three of the environments just considered is
24Na/9 which explains the value of 8/3 f&@ reported in Table =
1. TheC value for the 4x 4 crystal can be similarly derived. €
The observation that every pair of ions experiencing such a
short-range repulsion will also contributel/a to the Madelung
energy of the crystal allows th& constants to be extracted from
the calculation olUnada, b) to be presented in section 2.3.

2.2. Application to a One-Dimensional CrystalFor a one-
dimensional (1D) crystal consisting of a single alternating o9
sequence oNp cations andNa anions, the form of expression
1 for its cohesive energyip(b), depending on just the single
geometrical parametds, reduces to

0.95—

KC1 RbCl1 RbBr K1 RbI CsI
Mip | 2A 08554 9I5 T Y R TR T R Ty S
Ui®) =~ =+ 5 2 n
Figure 2. Predicted ratios of the optimum constrainea € b)
The Madelung constarp is readily evaluated through separations in nanocrystals relative to the bulk. The lines are from Born

model 54: solid lines are for the 1D system, and dotted lines are for

© m+1 the 2 x 1 crystal.A = Ags for lines 1 and 2; lines 3 and 4 (dotted)

_ (—1) _ havef = 1.5; lines 5 (solid) and 6 havie= 3. The crosses and circles
Mip = ZZ =2In2 ®3) are for the 1D crystals of indicated compositions. The crosses are

m= m derived from 54 and 53 using tHevalue taken from the ab initio
computations, as described in section 3.2.1. The circles are derived by

S . 1D - C .
_The equilibrium separat_lorh)e , Is that minimizingUsp(b) and locating theR value minimizing the ab initidJ,p(R) with inclusion of
is found from 2 to be given by the dispersive attractions.
pi0 — [ZNA\VO-D 4) 2.3. Difference between the Longitudinal and Transverse
€ Mip Separations.2.3.1. Fundamental Equations and Deductions.

For the nanocrystals containing more than a single chain, it is
The standard expression for the cohesive energy of 1 mol of useful to distinguish between the intra- and interchain contribu-
bulk three-dimensional crystal having the rock-salt structure with tions to the total Madelung enerdjaUmad@a, b). Although there
internuclear separatioR differs from 2 only in thatMip is are Na/n¢ cations in a nanocrystal composedmgfchains, the
replaced by the Madelung constaé.«(= 1.74756456) and that  total intrachain Madelung energy in a crystal havirghains
the repulsive term becomesMR". For this bulk crystal, the s still given by—Na(2 In 2)b, unchanged from the single chain

equilibrium separation, denoteRZ:G, is given by system. After defining the total interchain Madelung energy in
V1) 1 mol asNAU*Ya, b), the energyJ(a, b) in expression 1 for
Rg:e = (&&A) (5) the cohesion becomes
6:6)
2In2 2A | CA
It follows from 4 and 5 that the ratio of the equilibrium Ua, b) = — b + Upgad(a’ b) +E+§ ()

separations in the 1D chain and the bulk is given by

b(leD 1 Mg\ V0D For t.he purposes of calcqlatingi”c‘ad(a, b) the rele_vant
== (_ _) (6) properties of any pairs of chains are specified by the intgger
RS'G 3Myp which yields the perpendicular distance between the two chains.
This is the distance between two ions in the same plane, each
Result 6 shows that the fractional change in the interionic of which lies in one of the two chains. If the ion in the second
distance on passing from the bulk to the 1D chain is independentchain has< andy coordinates ofa andka measured relative to
of the strength, as defined I#y of the short-range repulsion. It  the first ion, so thaj andk are integers, theq is defined asj?
is shown in the next section that this is a general result valid + k?), so that distanca(j? + k?)¥2 between the two ions is
for all the nanocrystals. Thus, relation 6 shows that the fractional a/q. Table 1 presents all the values arising in each
changes in the geometry are determined solely by the range ofnanocrystal. Since the two ions will have the same charge if
the repulsion defined by the exponemt Since the ratio in is even but opposite charges whens odd, the electrostatic
brackets in 6 is less than unity, the ionic separation in the chain interaction energy of an ion in the first chain with the ion in
is predicted to be contracted relative to that of the bulk. It is the second chain is{1)%(a+/q). The distance between the ion
predicted from the numerical values fit"/RS®, equal to in the first chain and one in the second, if the latter resides in
0.4202/-1) and depicted in Figure 2 as a function mfthat a plane having coordinate oimbrelative to the first plane, is
the greatest fractional contraction of 0.841 will occur for LiF, (ga + n?b?)2 wheremis a positive integer. The electrostatic
for which n is 6. It is further predicted from this relation that energy of interaction between these two ions is therefore
the contraction decreases with increasingntil it vanishes in (—1)a"m/(ga2 + nPb?)Y2 The total electrostatic interaction
the hard sphere limit afi tending to infinity. In physical terms,  energy of interaction between the one ion in the first chain with
it can be seen that these contractions arise because, on passirgJl ions in the second chain is therefore given byLj%/(a+/q)
from the bulk to the 1D system, the factor of 3 reduction in the + 25 _,(=1)™/(q&? + mPb?)¥? because, for nonzeren,
number of short-range repulsions is much greater than thethere are two planes located at a distamt#rom the first plane.
fractional reduction in the Madelung energy by the ratio Since any chain contairida/n. cations, the electrostatic interac-
(2 In 2)/1.747. tion energy between all these cations in the first chain with all



Model for Properties of Nanocrystalline lonic Solids

the ions in the second chain is given by multiplying this energy
by Na/n.. If there areng‘p pairs of chains of the type defined by
g, the total electrostatic interaction in all chain pairs of the type
g between all cations in the first chain in any pair with all other
ions is given by a further multiplication by“gp. The required
total interchain Madelung enerdy"*{a, b) will be twice the
energy already calculated in order to include the interaction of
all anions, in the first chain in any of the pairs, with all other
ions in the second chain in each pair. Henc&®4a, b) is
given by

[+

(_1)m+l

1
2m=zl +
(qa2 mzbz)” 2

upe

2
—— _1\d
"4a, b) n(;( 1) @)

The numbersfgp of pairs of chains of the typg are presented
in Table 1.

The factor N/\(Z/nc)nip gives, for 1 mol, the number of
electrostatic interactions between closest ion pairs, so that this
equals the number of short-range repulsions. This provides an
alternative derivation of the coefficieftin eq 7, showing it to
take the value (2E)n,

It proves useful to introduce the definition of the ratiof a
to b by

—a
which allows 8 to be written in the form
Mp(X)
Ui b) = —— (10)
where
2 1 © (-t
M) =3 (LG -2y
n.“g X\/a ey (gpé + )2
This allowsU(a, b) to be expressed as
2In24+ M, (X
U(a, b) = _Tt,()+i_/:+C_HA (12)
a

SinceMp(X) is dimensionless being, for any given structural type,
a function of solely the variable, it can be regarded as a
generalization of the Madelung constant that can be called the
Madelung function.

The structures of the nanocrystals are best understood by first
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which showsR. to be given by
nA(2 + C)

1/(n—-1)
o

The quantityMg, defined through the second equality (15) as 2
In 2 + My(2) is just the Madelung constant for the constrained
crystal. Division of eq 15 by result 5 for the separa’tl@i6 in

the bulk shows that

Re

=

The values ofMy(1) evaluated from eq 47, as described in
section 3.1.1, are presented in Table 1. The value for the 2
1 crystal shows, as expected, that two chains attract, their
interaction energy being0.116741R. However, this interchain
attraction is much less than that-ef(2 In 2)/R within a single
chain. Examination of the top part of Figure 1 reveals the
physical origin of this difference. Within any chain, each ion
has two closest neighbors at a distaRand of opposite charge
with the two closest neighbors of the same charge being located
at the large distance ofRR However, not only does each ion
have only one oppositely charged neighbor at a dist&ioe
the adjacent chain, but also there are two neighbors of the same
charge at a distance af2R in the other chain. For 1 mol of 2
x 2 crystal, although there are twice as many closest interchain
attractions of energy-0.116741R, the total interchain interac-
tion energy is less than twice the value for the<2l crystal
because each pair of chains separated by the distAPReepel
rather than attract, these contributing0.02857R to the
Madelung energy. Examination of the bottom part of Figure 1
reveals the origin of this repulsion, the closest interaction at a
distancev/2R being between two ions of the same charge. The
values ofMp(1) in Table 1 show that the ratildle.¢/(2 In 2 +
My(1)), although greater than one, is always closer to unity than
is the fraction (2+ C)/6. It then follows from 16 that the
constrainedRe) equilibrium separation is reduced compared to
that of the bulk. Furthermore, on descending in Table 1, that
is, on passing to nanocrystals with progressively larger cross
sections, the Madelung energy ratio decreases less rapidly than
the increase of the ratio (2 C)/6. This shows that the fractional
contraction of the constraine® from the bulk separatioRS®
decreases with increasing nanocrystal cross section. For the 2
x 1 crystal, the dependence am of ratio 16, equal to
0.5814/0-1) is shown in Figure 2. Comparison of this result
with that for the 1D chain shows that the latter exhibits the
largest fractional contraction at fixed This therefore continues,

1(n—1)

[ nA2+C)
Re= (2 In 2+ M,(1)

2 + C Mg YD
(—6 M_) (16)

considering optimizing the geometry under the constraint that to the limit, the trend of increasing fractional contraction with

a = b, followed by elucidating any further changes that may
result from removing this constraint. Any such constrained value
of b(= a) will be denotedrR with the R minimizing U(b, b) (=
U(R)) denotedR.. Noting that, for such constrained geometries,
Mp(X) becomes the constaM(1) shows that

dU(R) _2In2+ My(1) nAR2+CQ)
dR R R

Application of the condition d(R)/dR|r=r, = O yields the
relation

(13)

nA2+C) _

2124 M)~ =2

0 (14)

decreasing nanocrystal cross section.

The direction of the individual changes amand b which
lower the energy on relaxing the structure from the optimum
constraineda = b, x = 1 geometry is determined by the signs
of the two derivatives d(a, b)/dal, and dJ(a, b)/db|, when
evaluated ak = 1. These derivatives are readily derived from
12 for all values ofx by using the chain rule and noting that
dx/daj, = 1/b and dd/db|, = —a/b? The results are

du(a, b)|  1dM(X) nca 17

Tda b & g a7)
du(a b)| 2In2+My(X) g dMy(x) 2nA

db la b2 B dx it (18)
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Evaluation of these derivatives at the optimal constraimed ( different nanocrystals, all these ratios being different from that
1) geometry for whicha = b = R. and addition of the results  in the bulk, and moreover, this ratio will not vary with the
show that nanocrystal as # 2C1. The right-hand side (RHS) of 23
depends only on the number of nearest neighbors and involves
du(a, b) du(a, b) _ terms of short range while the left-hand side originates from
da la=b=R, db  la=b=R, the electrostatic interactions which, being of long range, involve
21n 24+ M,(1) nA2 + C) the interactions of all the ipns. The'se. observations show that,
> — T 0 (19) for the nanocrystals, 23 will be satisfied by valuesxgtthat
R, R are not unity.
) . ) ) The third deduction follows from 23 by noting that while its
The last step, showing that the entire quantity 19 vanishes, |eft-hand side is independent of the right-hand side contains
follows because the expression on the right of the first equality y n with the exponenh being a number no less than 6. Since it
sign is nothing but constrained equilibrium condition 14. Result p55 already been shown thag will not be unity for a
19 shows that one of the distancar b must decrease on  panocrystal, the right-hand side of 23 will vary much more

relaxing the structure from the constrained equilibrium geometry rapidly with x for fixed n than will the left-hand side. It therefore

distances must be less than the separatiff)(in the bulk is required to satisfy 23. This means that the relaxation of any

material. nanocrystal from its optimal constrained geometry defined by
2.3.2. Ratio between the Longitudinal and Traeise Sepa- 15 will decrease with increasing

rations Comparison of ratia (= a/b) with unity will determine The fourth deduction from 23 is the determination of the size

which of the distances contracts on relaxing from the optimum of x when compared to unity. This determines whether, on
constrained geometry. An equation fors derived by writing relaxation from the optimal constrained geometryncreases

the termCA/a" in 12 as (1B")CAX", thus convertingJ(a, b) with b decreasing or vice-versa. On passing from the bulk
into a functionU(x, b) of just the variablesx andb. The two upward from the bottom through the nanocrystal sequence in
partial derivatives d(x,b)/dblx and dJ(x, b)/dX|s, which are both  Taple 1, the right-hand side of 23 has the valdgs®/s, /s, 2,
zero at the optimal unconstrained geometry for whick be and 3 forx = 1. The magnitudes of My(x)/dx should be
andx = X, are then found from 12 to be expected to followMy(X) in decreasing with decreasing nano-

crystal cross section and, moreover, to be roughly comparable

du(x, b) _ 2In 2+ My(x) _ DA+ CX ") (20) with the My(x). This shows that—dMy(x)/dx will be small
db Ix b? prtt compared with 2 In 2 because the data in Table 1 show that the
Mp(X) values have this property. The values of the left-hand
du(x, b) 1dM,(X)  nca side of 23 evaluated for= 1, therefore, increase more rapidly
Tax b b dx by (21) with decreasing nanocrystal cross section than does the factor

1 + 2/C already listed. This shows that since, for the bulk, 23
The vanishing of 20 at the relaxed equilibrium geometry shows is satisfied withx = 1 with both sides equal &, the left-
that hand side will become progressively larger than the right-hand
side on traversing this sequencexfis kept at unity. For
nA  2In2+4+ My(x) example, for the X 1 crystal, evaluation ofMp(x)/dX|x=1 from
DL o o (22) 11 yields —0.426 which taken in conjunction with thep(1)
e % value in Table 1 leads to a value of 3.53 for the left side of 23.
Since the right side of 23 contairsaised to the high powaer,
increasingx from unity will cause the right side to increase
much more rapidly than the left side of 23 which contains only

Substitution of this relation into 21 shows, after noting that this
also vanishes at the relaxed equilibrium geometry, that

21n 2+ My(x) . inverse powers of geometric parameters. Hence, 23 requires
————————— =x(1+2C"x.) (23) values ofx, increasingly greater than unity, to be satisfied as
dM,,(x) one passes up through the sequence of nanocrystals in Table 1.
ax  Ix=x, It has therefore been shown that relaxation of any nanocrystal

from its constrained equilibrium geometry will caugeto
Four interesting results plus a further useful inequality can be decrease while increases. This result is readily understood
deduced from this relation. The useful inequality is that, since physically as being a consequence of the Coulombic binding
the three quantities (2 In 2 My(Xe)), X, andC are necessarily  within each chain being much greater than that between different

positive, it follows that d,(X)/dX|x=x, Must be negative. chains.

The first main deduction from 23 is that this shows that, given ~ 2.3.3. Interchain Coulomb Energy and Nanocrystal Relax-
the structural type of the nanocrystal, the ratio ab is ation. Result 18, when taken in conjunction with both the
independent of the streng#of the short-range catieranion corresponding derivatives of relation 2 for energy of a 1D chain,

repulsion withxe being determined solely by the range of the yields expressions which show how the interchain coulomb
potential as defined by the Born exponemt This range  energy varies as the crystal structure is relaxed toward its

decreases with increasimg equilibrium structure. Division of eq 4 by eq 15 yields
The second main deduction from 23 is, as would be expected,

thatxe is not unity for the nanocrystals. This follows after noting pD Mo \vo-1)

that for the bulk material, which is just the limit of the sequence L ( 2 R ) (24)

of nanocrystals considered in Table 1 for which the planes R, (2+0)2In2

consist ofm; rows and columns asy tends to infinity, 23 is
satisfied forxe = 1 with C = 4. Considering still the case af Since the ratidVir/(2 In 2) is closer to unity than is 2/(2 C),
= 1, the ratio on the left-hand side of 23 will be different for result 24 shows that, in any nanocrystal having a cross section
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of two or more chains, its constrained equilibrium separation
Re is greater than that.” in the 1D system. The observation
that, for all distance® greater tharb;" in the 1D system, the
derivative dJ1p(b)/db of 2 will be positive shows that

2In2  2An
b2 bn+l

>0, forallb> b (25)

This shows from 18 that, sincdJda, b)/db|a=a,b=b, iS z€T0,

dM(x)
dx

My(xe) + <0 (26)

X=Xg

This is consistent with the deduction from 23 thitydx)/dX|x=x.
is negative.

Both result 26 and the established sign dfuk)/dx|x=x, are
significant because it follows from 10 that

du4a, b) 1 dM.(%)
T da b X 27)
and
duma"(a b) ( b<x))
‘ M )+— i (28)

The negative sign ofM,(x)/dx shows that 27 is positive, which

means that the electrostatic energy is raised by an increase of
a. This confirms, as expected, that the chains are bound by their
total mutual Coulombic attraction, as already elucidated in the

discussion after eq 16. However, it follows from 28, when taken
in conjunction with 26, that a decreasefvhich lowers the

total electrostatic energy actually increases the total interchain
9 y 1 left-hand side of 32 and only the two leading terms are retained.

electrostatic interaction. This can be understood from Figure
(top) from which it is seen that i is decreased while keeping

a fixed, the distance between the nearest like pairs of ions in
different adjacent chains is decreased thereby raising the total
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which on a simple rearrangement yields

A+ =5G-D+eH-1] (32

It is useful to introduce the two further constants defined by

k=8—1 (33)
and

_Cp_

=5G-1) (34)

After expressing 32 in terms of the variables defined by 33 and
34 and taking th@& + 1 root of both sides, a Taylor expansion
of the resulting factor of (# ki) to first-order ine yields

the result

k. k 1/(n+1)

_ 12 — | Un+1)
e(l ] ) k, 1

(35)
Result 35 first shows that decreases asincreases so that
x becomes increasingly close to unity with increasimghus
confirming the result already deduced from 23. However, 35
immediately shows that tends to zero as tends toward
infinity, thus showing that there will be no relaxation from the
constrained equilibrium geometry in the limit that the ions
behave as hard spheres, this corresponding to infmifehis
limiting result is not readily deduced directly from form 23.
The development from 32 to 35 is needed because the limit of
largen is not accessible if a Taylor expansion is applied to the

3. Numerical Results for Structural Trends
3.1. Predictions from the Basic Born Type Model.3.1.1.

interchain electrostatic energy even though these chains still Approximate Analytic EquatiomrA Madelung functionMp(x)
attract by virtue of the attraction between the closest pairs of contains one of more infinite sums which are functions of the

unlike ions in the different chains. Thus, it is the increasingly
negative electrostatic interaction energf2 In 2)b within the
chains which causes the value mto decrease on relaxing a
nanocrystal from its constrained equilibrium geometry. This
energy is significantly greater in magnitude than the total

interchain electrostatic interaction energy as shown by the values

of Mp(1) reported in Table 1 when compared with 2 In 2.
2.3.4. Ultra-Short-Range Limit of Very High fhe ratiox
will be quite close to unity. This suggests that it is useful to
define the deviationg, of x from 1 by

x=1+¢ (29)

and then to obtain an expression forcorrect to first order.
This procedure defines the two constaGtsndH through
21n 2+ My(x)
dM,(x)
dx

=G+ He (30)

X=X

The derivation of numerical values f& andH is described in
section 3. Introducing both definitions 29 and 30 into 23
transforms this relation into

G+He=(1+¢€) +2C 1L+ e (31)

one variablet = gx2. Each such sum, to be denot&f), is
defined by

B ( 1)m+l
0= Z(t+mz)1’2

thereby allowingMp(X) to be expressed as

2( 1)q+l

cq

(36)

1
My() = (— - ZS(qxz)) (37)
xq

The observation that the largeterms in the sum on the RHS

of 36 tend to 1)™"%m, which is just the expansion of In 2,

suggests thag(t) might be accurately approximated by the
analytic form

EIn2
(1 + )X

S{)=D+ (38)

whereD, E, andk are constants to be determined. The exact
results from 36 thag0) = In 2 andS() = 0 show that one
must takeD = 0 andE = 1 in 38. The value ok is determined
by demanding that the exact result f&(t)/dt|—o derived from
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ds(t)
Ta

1 © ( 1)m+l

2f (t + n)*? #9)
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Gy
Mp(X) =

X

2In2
-3G (47)
2

@+ 9o

is exactly reproduced by the corresponding result derived by Which is the basic result of this section. The numerical values

differentiating 38 with respect tb This procedure shows that

k must take the value 0.65032557. Although evaluation of sum
39 by direct summation is rapidly convergent, this is not the
case for the original sumS(t) which were required to derive
the numerical results fdvl,(1) presented in Table 1. These sums
are most readily evaluated by writing

mt1

oo(_ © 1
t) = + ¥ ()™ ———-] (@0
W=7 DA o m) (40)
> 1
=n2+ S ()"——m-= 41
AP X i e m) -

The sum remaining on the right side of 41 converges rapidly
when explicitly evaluated for the smal/alues of interest here
(t = 1.3 x 3/2). The alternative approach of demanding that
38 precisely reproduces the exact result whenl yields ak
value of 0.6522, very similar to that already deduced.

The pth derivatives of exact form 36 and its analytic
approximation 38 wittD = 0 andE = 1 are

d"S(t) ( P@p—1t =
Z(
di® (t + m2)p+l/2
and
PSt)  (—1)Pk(k+ 1)..k+p—1)In2
a 1+ 1)< (43)
The quantity (p — 1)!! is defined as 1, 3, 5, ..., (2— 1). The

of constantss, andGq reported in Table 2 enabldy(x) to be
evaluated for all nanocrystals. Since 47 can be analytically
differentiated with respect tg, the eq 23 determining can be
written in a closed form which can be readily solved. Result
47 also allows the constanith G, ki, andks in the linearized
form of 23 (35) to be evaluated.

3.1.2. Solution for Structural Trenddt is of interest to
examine the nanocrystal dependence of the derivatives of the
energy with independent variations @&ndb evaluated at the
constrained equilibrium geometry. These will give an indication
of the relative strengths of the forces driving the crystal away
from the latter configuration. The expressions used to evaluate
dU(a, b)/daja=b=r, and dJ(a, b)/db|.=p=r. are derived by setting
a=b = Rein general results 17 and 18 and then using result
14 to eliminate the term&/R"~1 from the derivatives. The result
for dU(a, b)/dala=p=r. iS

MgC

) K
- 2+4C

dU(a, b) .
0 = gs @9)

da

1 (de(x)
a=b=Re_ Rez dx

x=1

The derivation of an expression fod¢h, b)/db|.=,=r, by using
the same procedure yields a result which is just the negative of
eq 48. This provides a very specific illustration of relation 19.
Numerical values for the coefficiete in each of the nanoc-
rystals are presented in Table 3. Although these coefficients
are independent afi, the dependence amin the expression
for Re means that the gradients of 48 are not entirely independent
of n. The result that these gradients increase with decreasing
nanocrystal cross section strongly suggests that the smaller
nanocrystals will exhibit greater relaxations from the optimal
constrained geometry.

The ratiosagbe predicted by numerical solution of 23 with

agreement of the results of 0.7439, 1.9716, and 7.1971 derivedM,(x) expressed as in 47 are presented in Table 4 for four

from 43 att = 0 for p = 2, 3, and 4, respectively, with the

different values oh. The results confirm the previous analysis

corresponding exact values of 0.7291, 1.8611, and 6.5499that these ratios are all greater than unity, that they decrease
derived by evaluating 42 shows that one can expect the analyticwith increase of botm and the size of the nanocrystal cross

form for St) to be sufficiently accurate for all thevalues of

section. The 2x 1 nanocrystal witm = 6, the value for LiF,

interest that are used both in 23 and in the evaluation of the shows the largest distortion from the bulk, this being almost

first derivative in that relation that only insignificant errors are
introduced into either th®, values thereby derived or those of
the cohesive energies discussed in section 4.

Substitution into 37 of 38 wittD = 0, E = 1, andk =
0.65032557 yields an analytic result fivl,(X) in the form

1 2In2
My(x) = Z( 1" g — (44
x\/_ 1+ qxz)
Introduction of the definitions
(_1)q+lngp
A (45)
nc q \/(_]
and
G, = 2(— 1)
g ==(-1)""nf (46)
C

allows My(x) to be written as

11%. This is reduced to 2.9% for thexd 4 LiF crystal. The 4

x 4 crystal withn = 12, the value for Csl, shows the smallest

distortion of a mere 0.7%. The fractional contractidR’®

of the interplane distances relative to the bulk were calculated

from the relation
b

=

derived by using 5 to both introduce the bulk separation and to
eliminate A from 22. The results, presented in Table 4, again
show that the fractional contractionskefdecrease with increase

of eithern or the nanocrystal cross section. These contractions
range from 16% for the 1D LiF system to 1.7% for thex44

Csl crystal. The fractional distortiors/R%*® of a relative to

the bulk, derived from the results in Table 4 ag/lfe)bs/R,

are naturally smaller than those of the interplane separations.
However, the results show tha also is predicted to be
contracted, albeit slightly, relative to the bulk. These fractional
contractions cover a much more narrow range, from 3.4% for
the 2x 1 LiF system to 1% for the case of*4 4 Csl. Sinceae

Mg6 1/(n—1)

21n 2+ My(x)

2+Cx"
6

(49)
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TABLE 2: Coefficients Gq and Gy Yielding the Madelung Function My(x) through Equation 47

crystallite Gq Gx
2x 1 Gi=1 1
2x%x2 G1:2,G2:*1 (Z_A)
V2
3x3 G = %5, Gp = —16/9,Gs = —4s, Gs = 16/9,Gs = —%o (2 _2 ﬁ)
V2 95
4 Gi1=3,Gy=—%,Gy=—2,Gs=3,Gg= —1,Go = 1, o, 3 3 .1
Gi1o=—35,G13=1,G15= —4 3 62 5 2J10 413

TABLE 3: Coefficients K, of Equation 48

crystallite Ke
2x1 0.0754
2x2 0.0632
3x3 0.0585
4 x4 0.0230

TABLE 4: Ratios agbe and by/RE*® for Four Different Values
of Born Exponent n

n==6 n=9 n=10.5 n=12

crystallite a/be b/RE® a/be bJ/RS® adhe b/RE® agb. b/RS®
1x1 0.841 0.897 0.913 0.924
2x1 1107 0.872 1.045 0.922 1.035 0.935 1.028 0.944
2x2 1.074 0910 1.031 0.948 1.024 0.957 1.019 0.963
3x3 1.039 0942 1.016 0.968 1.012 0.973 1.010 0.977
4x4 1.029 0956 1.012 0.976 1.009 0.980 1.007 0.983
buk  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

is always larger thar, the former distance recovers more
quickly toward the bulk separatiol?g6 as the nanocrystal
Cross section increases.

Evidence that the predictions in Table 4 are trustworthy is
provided by the results of ab initio HartreEock computatiort8
of the electronic structures of 2 LiF nanocrystals. These

TABLE 5: Coefficients k; and k, of General Linearized
Equation 35

crystallite k1 ko
2x1 4.540 1.266
2x2 4,732 1.172
3x3 4.910 1.084
4 x4 5.022 1.059

conditions. The interionic pair potentials required for this
program were computed using the relativistic integrals pro-
gram2425This method, after augmentation with descriptions of
both the short-range electron correlation and the interionic
dispersive attractions, has been shown to provide a good
description of bulk ionic crysta?&2° including the delicate
problem of the relative stabilities of the 6-fold and 8-fold
coordinated phases of cesium chlori@é! The methodology

is described in the following publications: refs 26, 28, 32, and
33. The computations for the:2 2 nanocrystal predictealy/be
andby/RS® ratios of 0.973 and 1.004 in reasonable agreement
with the Born model values of 0.963 and 1.019. This comparison
is less clear-cut than the one for LiF just described because the
GULP computations included dispersion which is not explicitly
included in the Born model, this only entering the latter
indirectly, if at all, through the derivation of the value of 12

were performed with the numbers of planes being progressively for n from the experimental compressibilities.

increased until the geometries of the planes near the centers of The numerical values of the coefficierksandk, needed to
the small crystallites remained unchanged on the addition of evaluatexe as 1+ € using the linearized approximation to 23
further planes. These computations, to be reported in detail (35) are reported in Table 5. For ax 4 nanocrystal, this

elsewhere, predicteak = 3.685 au andb. = 3.458 au, thereby
yielding anag/be ratio of 1.066 in good agreement with that of

1.074 derived from the present Born type model. Furthermore,

predicts values of 0.0297 and 0.00722 for= 6 and 12,
respectively, in very good agreement with the results of 0.00292
and 0.00716 (Table 4) derived from 23. Fox2lL nanocrystals,

both these results are smaller than the separation of 3.789 audhe corresponding linearized results of 0.10074 and 0.0275 for

(ref 21) predicted by a Hartred~-ock computation with periodic
boundary conditions for the bulk system. Combination of this
result with that for in the 2x 2 system yields a value of 0.912
for bs/R®, in excellent agreement with that of 0.910 predicted
from the Born type model. The ab initio computations included

n=6 and 12 are also in good agreement with those of 0.10687
and 0.0283 derived from 23.

3.2. Influence of the Finer Details of the Cation-Anion
Interaction. 3.2.1. Structural Dependence of the Effeeti
Cation—Anion Repulsionlt has been assumed that the quantity

not only all the physical effects described in the present A defining the strength of the short-range cati@mion interac-
analytical method but also the short-range interactions betweention is independent of structure. In this section, the consequences

non-nearest ion pairs, of which the antesnion term will be
the least small, as well as third and higher order multibody
effects of the short-range lnalin type22 The agreement of the

of any possible such variations and their origins are examined.
It is now well established that, although the properties of cations
in a crystal remain essentially unchanged from those of the free

analytic model with the ab initio results provides evidence that cation, anions are significantly modified from their free states

the additional effects included in the latter play only a very

on entering a cryst&P-28:3237 |n particular, in-crystal anions

minor role in determining the structures of the nanocrystals, at are slightly but significantly compressed relative to free anions.
least for LiF. These computations are also comparable in that This compression means that the cohesive enadgR)] for x
neither of the two sets include the interionic dispersive attrac- = 1 is given, in the leading approximation of neglecting both

tions.

the interionic dispersive attractions and the short-range interac-

Further evidence that the present Born model captures thelions between more distant pairs of ions, by

essential physics is provided by the computation using the GULP

progran#® of the structure of a % 2 Csl nanocrystal, this being
infinite in extent through the use of the periodic boundary

Mg

UR=-3

+EJR + 2+ C)V(R) (50)
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Here, E(R) is the rearrangement energy required to convert TABLE 6: Ratio bi”/RE® Predicted from 54 and 53 (Born)
the free anion into its form optimal for the crystal with the with the Constant f Derived from the RIP Computations

specified geometry whil¥/y(R) is, for cation-anion separation ~ Compared with Those (RIP) Deduced Directly without
R, the short-range energy of interaction of one cation with one 12King f to Be Constant
anion measured not with respect to the sum of the energies of method ~ KClI  RbCl RbBr  Ki Rbl  Csl  CsCl
the free ions but with respect to the sum of the free cation energy Born 0930 0.935 0.940 0935 0.943 0951 0.964
and the energy that an isolated anion would have if it had the RIP 0.933 0.937 0.938 0.924 0.932 0.931 0.952
wavefunction optimal for the crystal with that geometfy33
Result 50 shows that the catioanion repulsions, which are  defined. For the 1D chain and2 1 nanocrystals, for whick
represented in the standard Born modelA&s", are actually is respectively zero and unity, ratio 53 takes the vafiieand
effective potentiald/e(R) given by 6/5 for f = 1.5. For the case df= 3, these ratios are increased
to /3 and #/5. These results then show that distance ratio 54
EdR) 51 becomes (0.58828y"~1 and (0.7003Y"-1 for the 1D chains
2+C (51) havingf = 1.5 and 3, respectively, while the corresponding
values for the 2x 1 nanocrystal are (0.69764)"Y and
because this definition allows 50 to be written as (0.7751}/@*1). These predictions of 54 are compared in Figure
2 with those derived taking\ to be independent of structure.
UR) = — Mg + 2+ C)V«(R (52) The results illustrate the increase RIRS® toward unity with
R increase off, n, andC.
For each of the 1D chains, for whid is designated as.",
the ratiob;”/RS® predicted from 53 and 54 using the value of
f derived from the RIP computation for tiievalue near to the
bulk experimental equilibrium is presented in the first line of
Table 6 and plotted in Figure 2. For KCI, RbCl, and RbBr, the
results lie close to the line fof = 1.5 because the RIP
computations at near equilibrium geometries predictaxibe
1.27, 1.34, and 1.31, respectively. The results for the iodides
lie appreciably below thef = 1.5 line because the RIP
computations predicted smalléwvalues of 1.0, 1.1, and 1.3,
respectively. For the 1D chains, it was straightforward to
dispense with the assumption thiats independent ob by
evaluatingUip(b) as a function ob from the values o&,(R)
andVy(R) taken directly from the RIP computation for the bulk
material. The resulting predictions fle/RS:6 are presented in

Ver(R) = V4(R) +

It is this form, rather than 50, which is the standard expression
for the cohesive energy in which no rearrangement energy
appears explicitly.

Result 51 shows that«(R) will be structure dependent even
if the individual termsE¢(R) and V4(R) were independent of
structure. The asumption thegx(R) can be written in the Born
form AR " implies that its two components in 51 also take this
form. In the case that these two components are structure
independent and vary #R™", the ratioE(R)/Vs(R) will be a
constant, denoted dsindependent oR. It then follows from
51 that the termA entering expression 15 for the optimal
constrained nanocrystal geometry will differ from that, to be
designatedds.s, appearing in result 5 for the separation in the
bulk. It follows from 51 that

A f 1 the second line of Table 6. For KCI, RbCl, and RbBr, the results
AT-G = (l + m)_f (53) agree closely with those derived using the constassumption
' 1+ 6 and presented in the first line. Examination of the computed
values ofE«(R) andV¢(R) showed that their ratio depended only
Division of eq 15 by eq 5 then yields very weakly onR. For the iodides, however, this ratio varied
significantly withR, being, for example, in the case of KI, 0.997
R. [ A YO D[Mgg2 4 c\UnD atR= 6.7 au but 0.859 &R = 7.0 au. Such variations explain
ReTze " \Ae M, 6 (54) why theb;”/RS® ratios derived using the constarassumption

do not agree with those computed directly using the RIP results

Since the quantitC increases with increasing nanocrystal for all distances. , ,
cross section, 53 shows thatwill increase with decreasing 6_';9r the crystals having more than one chain, result 4&dor
cross section. It then follows from the presence in 54 of the Re” is modified in the same way as 54 in the event that the
additional factor of A/Ag.¢) Y01, greater than unity and absent structural dependence Afis governed by 53 witWer(R) taking
from 16, that this crystal dependence Adfwill act to reduce  the Born form. Thus, 49 acquires the additional factor Af (
the Contraction predicted from 16. A6;6)1/(n71) Wh|Ch |S IntI‘Oduced from 5 |n USIng th|S bOth to

More quantitative information can only be obtained by introduceRgﬁ and to eliminateA from 22. This shows that the
performing some electronic structure computations which yield contractions predicted under the const#ntasumption are
numerical values for eitheVe(R) or E(R) and Vy(R). For a increased althoughs/RS® remains less than unity. For thex2
range of bulk alkali halides, the two latter energies have been 1 nanocrystal, the resulting predictions are compared in Table
derived by augmenting the predictions computed with the 7 with those derived assuminyto be constant.
relativistic integrals program (RIPY25 with much smaller The results presented in Figure 2 and Tables 6 and 7 were
contributions arising from electron correlations of short ratfge.  derived assuming that boB(R) andVs(R) remained unchanged
The results for both the 6:6 and 8:8 phases of CsCl have alreadyon passing from the bulk to the nanocrystal. The plausibility of
been reported-3twhile the further results for KCI, RbCl, RbBr,  this assumption can be tested by examining the variations of
Kl, Rbl, and Csl have not yet been published. These computa-these quantities on passing from the 4-coordinated zinc blende
tions showed thaE(R) is typically about +1.5 times larger structured polymorphs of the bulk crystals to those having the
than V4(R) although, of course, the latter makes the larger rock-salt or cesium chloride structures. Increase of the coordina-
contribution toVes(R) on account of the 2 C denominator in tion number will tend to produce increasingly compressed
51. Furthermore, for many crystals, this ratio is found to be anions, leading to greater rearrangement energig®) but
roughly independent dR, thereby enabling the constdrib be smaller short-range catieranion repulsion®¥y(R). Such varia-
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TABLE 7: Ratio of bJ/RS® Computed for the 2 x 1
Crystallite Chain for Three Different Values of Born
Exponent n and Parameter A Corresponding tof = 0, 1.5,
and 3

be/Rg:B
n A2><1:A A2><1: 6/5A A2><1:4/3A
9 0.922 0.944 0.956
10.5 0.935 0.953 0.964
12 0.944 0.960 0.969

tions will tend to reduce the differences between the effective
potentials in different phases of the same material when
compared with those that would ariseB£(R) andVs(R) were
both phase independent when the phase dependentg(B)

is caused solely by the factor of 1/(2 C) multiplying the
rearrangement energy in 51. Although the restiftsfor CsCl
showed that the change W«(R) on passing from the 6:6 to
the 8:8 phase was significantly greater than that of its two
componentg«(R) andVy(R), the opposite was the case for all

the other alkali halides mentioned above because, for these latter

halides, bothE¢(R) and V{(R) were significantly more phase
dependent tha¥le(R). This shows that the results of this section

J. Phys. Chem. B, Vol. 110, No. 12, 2008045

—Cs(XY)/rxy. Each dimensionless coefficieB{(XY) is the sum

of the inverse sixth powers of the distances of all ions of type
Y from one ion X, with all distances scaled such tRas unity.
Thus, —S(XY) Ce(XY)R " is the total dispersive attraction of
one ion of type X with all other ions of type Y in the crystal.
For any cation in the 1D chain, one anion is located at all
distances which are odd multiples of the basic separdj@o

that there are two such anions for any given distance defined
regardless of direction. Similarly for any ion of type X, another
ion of the same type is located any distance which is an even
multiple of R. This shows that

D - 1
S2(CA)=2F ————=12.0029

(56)
=1(2n — 1)°

and

S2(CC)=S(AA) =2 1 00318

2o (57)

For the bulk rock-salt structure, it is a long established standard

are certainly relevant to any future measurements of the structure'esult thatSs(CA) = 6.5952 and tha(CC) = Ss(AA) =

of the already prepared encapsulated CsCl systdtiowever,
for the iodides, for which there is the most experimental data,
the results indicate that the assumption thee¢mains unchanged

on passing from the bulk to the encapsulated nanocrystal migh'['r6 =
not be less realistic than any derived under the assumption that

it is E(R) and V(R) which remain unchanged.

3.2.2. Significance of the Dispersi Attractions.The Born
model does not explicitly consider the dispersion forces between
the ions. However, this model includes these implicitly, at least
in some average way, through the introduction of both the
experimental lattice constants andvalues derived from the
experimental compressibilities. The purpose of this section is
to examine whether the previous conclusions would be signifi-
cantly modified by explicitly introducing the interionic disper-

1.8067332|t is useful to introduce the quantitidg defined as

S(CAIC(CA) + %(%(CC)[Ce(CC) + Co(AA)])
2+C

(58)

It follows from the above values of tH&(XY) coefficients that

Te" = 1.0014%54(CA) + 0.00795C4(CC) + C4(AA)] (59)
and
Tg® = 1.009Z4(CA) + 0.1506[C4(CC) + C4(AA)] (60)

The coefficients of 58 are useful because these enable the total

sive attractions. The essential features can be revealed by;ohesive energy to be expressed in the form

examining the 1D chain. These attractions are of much longer
range than the short-range catieamnion repulsions. Thus, the
leading, dipole-dipole, terms in the total dispersive attraction
depend on the inverse sixth power of the interionic separations
for distances sufficiently large such that dispersion damp-
ing3233:38caused by ion wavefunction overlap can be neglected.

MR _ _
UR =—- % +(@2+CO)AR "— TR (61)

This differs from the expression for the cohesive energy of a
nanocrystal in any constrained £ 1) structure only in that

It is therefore necessary to consider the dispersive attractionsthe non-Coulombic interactioAR™" between nearest neighbor

between all ion pairs and not just the closest neighboring pairs.
In the leading approximation, one considers only the dipole
dipole dispersive interactions in their undamped form and
neglects the smaller higher order contributions which commence
with the dipole-quadrupole dispersive attractions. The total
interionic dispersive attractiofNaUgisi(R) of 1 mol of a 1D, or
bulk, crystal with geometry defined by the single closest
neighbor separatioR is then given b§?333°

Uy R) = ~R(SCAICK(CA) +
HS(CONCACO) + C(AATT} (55)

The distancé in the 1D case is temporarily designated=as0

that the exactly comparable equations can be written for the
1D and bulk systems. In 5%4(XY), where X or Y can be
either cation C or anion A, is the distance independent dipole
dipole dispersion coefficient which yields the attraction of one
ion of type X with one of type Y separated by a distangg as

ions has been replaced by an effective interachiBn" — TR 5.

For the 1D and bulk crystals, the factor2C reduces to 2 and

6, respectively, just the coordination number of each ion.
Differentiation of 61 with respect t&, equating the result to
zero and then writing one resulting piecaA(2 + C))/R"1,

in terms of the remainder yields the relation

nA(2 + C)
Mg+ 6(2+ C)TgR,

R = (62)

Division of this result for the 1D chain by the corresponding
result for the bulk yields

=2
Rg: 6

where Re for the 1D chain has been redesignated bg%
Comparison of this result with the corresponding ratio
(Y3)Me:¢/(2 In 2) predicted without considering the dispersion

n—1 _ 1 M6:6 + 36-1-2:6(R2:6)—5
32In2+ 12105

(63)
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is achieved by defining the quantityas

WY T’ Ms
T R O A
It then follows that one can write
M6:6 + 361—2:6(Rg:6)75 _
21In 2+ 12T3°(b) ~°
12-|-1D le )
M6:6(1 i |(nez + 12T3°(b2%) %
( 12-|—1D le)s) (65)
6 e
2In2|1+ >in2

which will be greater thaMe.¢/(2 In 2) if 6 is positive. Since
the dispersion is not the major term, it is sufficient to evaluate
the ratio in 64 by using result 6 derived by considering only

Bichoutskaia and Pyper

TABLE 8: Ratios Relative to the Bulk of the Energies of
Nanocrystals, UnrelaxedU(RS)/Uq 4(RS®) and

RelaxedU(Ry)/Ug:s(R®), to the Constrained @ = b)
Equilibrium Geometry

U(R)/Use(Re") U(R)/Us:(RE)
crystalite n=6 n=105 n=12 n=6 n=105 n=12
1x1 0.8853 0.8417 0.8351 0.9435 0.8691 0.8583
2x1 0.9321 0.8980 0.8928 0.9586 0.9106 0.9036
2x2 0.9593 0.9362 0.9327 0.9691 0.9409 0.9367
3x3 09748 0.9592 0.9569 0.9787 0.9611 0.9585
4x4 0.9838 0.9719 0.9701 0.9859 0.9729 0.9710

Substitution of this result into 12 evaluated for the bulk véth
= b = R®® yields the standard result for the bulk cohesive
energy

g

n

, M.
s =~ 55f1 - (67)

the Madelung and short-range repulsion. The smallest valueThe cohesive energy(RE9) of the nanocrystal evaluated at

predicted for the ratiol.”/RE)5 is 0.4843, which is the result
for n = 7. This shows that ®”/R5%)5 must be greater than
1.4529, which shows that B[ /T )(bs/RE©)5 must also be

greater than 1.4529 because it follows from results 59 and 60

that TS is greater thais°. Since this value is greater than that
1.2606 ofMg.¢/(2 In 2), it follows thatd is positive and, hence,

that the ratio of distances 63 will be greater than that predicted

without considering the dispersive attractions.

The cohesive energigs;p(b) were calculated as function of
b by using the RIP values @&(R) andVs(R) computed for the
bulk with the C¢(XY) dispersion coefficients derived from the
Slater-Kirkwood formula via the experimental molar polariz-

abilities, as described elsewhere. These computations included

the dispersion dampifg?33-38as well as the dipolequadrupole
dispersive attractions, both evaluated as previously disci#ésed.
The resulting predictions foR/RZ®, plotted in Figure 2, are

seen, as predicted from the above analysis, to be closer to unit
than those derived without considering dispersion. The differ- !

the equilibrium geometry of the bulk, a constrained structure
with a= b= RS, is found, from 12 after using 66 to eliminate
A, to be given by

: 1 MG:G(2 + C)
URSY) =~ @(MR T e (68)
Division of this result by eq 67 yields
Ms _2+4cC
U(RY9) _ Mg 6n
6:6y 1 (69)
UG:G(ReG) 1- n

This shows, in the hard sphere limit {> «), that the ratio of

>;he binding energies is just that of the Madelung energies. These

become more negative as the cross section of the nanocrystal

ences are greater for the Rbl and Csl because these species halRcreases toward the bulk value. This fractional loss of cohesive

the largest dispersive attractions.

4. Global Analysis of the Cohesive Energetics

The total binding energy(a,b) of each nanocrystal expressed
as a ratio to that of the bulk is readily derivable from the present

energy decreases with decreasirtgecause the number of short-
range repulsions in the smaller nanocrystals is less than that
from the six neighbors in the bulk. The quantitative results are
presented in the first three numerical columns in Table 8.

The cohesive energy(Re), at the relaxed but constrained (

theory. This also enables one to calculate the energy gains in= 1) optimum geometry of the nanocrystal, is given by an

the different stages of relaxing the nanocrystal to its equilibrium

expression differing from 67 only in the replacement\s

geometry, all measured relative to the bulk lattice energy. Theseby Mgr and of RS:G by Re. Division of this result by eq 67
energy ratios can be converted into absolute values simply by followed by invoking 16 to eliminate the ratio of the equilibrium

invoking the experimental values for the bulk lattice energies.

For Csl, only the lattice energy of its most stable phase, that

having the 8-fold coordinated CsCI structure, is known experi-
mentally. However, computations using the RIP predict that the

lattice energy of the 6:6 phase is only 6 kJ/mol less than that

(610 kJ/mot®) of the 8:8 structure, a prediction qualitatively
similar to the experimental (5.6 kJ/mbF) difference between

the energies of these two phases of CsCl. Hence, using the lattic

energy for the 8:8 structure will only introduce errors of about
1% into the absolute energies to be presented for nanocrystallin
Csl.

Equilibrium condition 14 applied to the bulk for which
2 In 2+ Mp(1) = Mgg andC = 4 yields

A Ms.6

(R 6nR®

(66)

e

distances yields

UR) _ Mg[ & Mg)uoD
Ugo(RZ9) Me:s\2 + C Mg

(70)

The numerical values of this ratio, presented in the three right
most columns of Table 8, show, when compared with the
corresponding values oB(RE%/Us6(RE), that the energy

egains on relaxation decrease both with increasimgand

nanocrystal cross section. These relaxations occur because the
reduction in the magnitude of the attractive Madelung terms
on passing from the bulk to the nanocrystal is less than that of
the short-range repulsions, reduced by virtue of the lower
coordination number.

For any actual nanocrystal, a numerical value for the energy
gained through relaxationEfay, equal to the difference
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TABLE 9: Energies (Ereix = U(RE®) — U(Ry)) on Relaxing TABLE 11: Comparison between Theoretical and
to the Constrained @ = b) Equilibrium Nanocrystal Expe_rlmelntal V?'”(?_S (?f the )
Geometries and DifferencesADe = U(Re) — Ue:e(Rg:G)) Fr%ctlona Longitudina Coptra_ctlons o/ _ .
between the Bulk and Nanocrystal Lattice Energies (in RS®and the Absolute Longitudinal Spacingsbg
kJ/mol) by/RE® be
LiF (De = 1036}° KI (De = 649)° Csl (D, = 610, see text) crystallite A—Ace A—fAcs exp A=Acs A=fAcs exp
crystallitt Eeax  ADe Erex ADe  Erelax AD. KI2x2) 0957 0964 0979 6389 6436 6.538
1x1 60.3 58.5 17.8 85.0 14.2 86.4 KI'(3 x 3) 0.973 0.977 0.984 6.496 6.522 6.566
2x1 27.5 42.9 8.2 58.0 6.6 58.8 Rbl (3x 3) 0.975 0.980 0.981 6.762 6.801 6.803
2x2 10.2 32.0 3.0 384 2.4 38.6 Csl(2x2) 0.963 0.971 0.969 6.943 6.999 6.992
3x3 4.0 22.1 1.2 252 1.0 25.3 .
4 >X< 4 292 14.6 07 176 0.6 17.7 aThe theoreticabe values are derived frorIDe/I-'\’i'6 multiplied by the
experimentaRSe. The values of are derived from RIP computations,
TABLE 10: Ratios of U(ae, be)/Us6(RS®) of Lattice Energies as described in the text.
of the Fully Relaxed Nanocrystals Relative to the Bulk and o ) )
Nanocrystal Energies Gained J(Re) — U(ae, be)) on Relaxing multiplying by the experimental lattice energy. The results for
the a = b Constraint (in kJ/mol) LiF, KI, and Csl are presented in Table 10. The results show
U(@e, be)/Uso(RE?) U(Re) — U(ae, be) that these energy gains range from the small, for LiF, to the

crystallite n—6 n—105 n—12 n—6 n—105 n—12 almost ins_ig_ljificant, for 2x 2 c_rystals of both_ Kl and Cs_l. _

i . The ab initio quantum chemistry computations, described in
2x1 09613 09114 09042 28 052 037  the |ast section, for finite sized pieces of thex2 nanocrystal
2x2 09707 09414 09371 1.7 032 024 aiso provide evidence for the reliability of the predictions from

the Born model. The results showed that the energy gain on
making 1 mol of new contacts in a process of the tggkeiF),

+ p(LiF)>— (m + p)(LiF)2 was essentially constant at 224 kJ/
mol of planes being independentmfandp.2® Here, the species
m(LiF), consists oim of the planes containing two cations and
two anions. An independent computattéfor them=p =1
case yielded the same result 1 mol portion of LiF stoichio-
metric formula units of the Z 2 nanocrystal can be constructed
from its constituent gas-phase ions by first formMg2 single
(LiF) planes and then assembling these planes, the latter process
releasing 112 kJ/mol of formula units. Addition of the 887.2
kJ*2 computed for the heat of formation of thelg/2 isolated
lanes predicts the lattice energy of thex22 nanocrystal to

e 999 kJ/mol. This agrees well with the value of 1006 kJ/mol

URE® — U(Ro), can be derived by subtracting the numerical
value of 69 from that of 70 and then multiplying by the
experimental lattice energy. Results for LiF, Kl, and Csl, for
which n takes the values of 6, 10.5, and 12, respectively, are
presented in Table 9. Although these energy gains are ap-
preciable for the smaller nanocrystals, particularly for LiF, they
decrease rapidly with increase of batland crystal size until
becoming small for the 3« 3 and 4x 4 Csl systems. The
difference QAD¢) between the total lattice energy of any
nanocrystal and that of the bulk can be derived by subtracting
from unity the ratioU(Re)/Ue:s(RS®) and then multiplying by

the experimental bulk lattice energy. The results, presented in
Table 9, show that the greatest fractional energy losses ariseE

for large values oh for which, as already shown, relaxation derived by combining the Born model lattice energy ratio

pr%i??jﬂ:gg;ﬁgﬁhingg%it?;';{_ 1 relaxes the nanocrvstal presented in Table 9 with the experimental bulk value of 1036
. Y kJ/mol1°

to its true minimum energy(ae, be). The derivation of the ratio
of this energy to that of the bulk is facilitated by defining the 5. Discussion

quantityy by
The elucidation through microscopy of the structures of both

b, 2 x 2 (ref 10) and 3x 3 crystald! of Kl as well as that of 3
Y= 56 (71) x 3 Rbl and 2x 2 Csl crystals? all encapsulated in singled
R walled carbon nanotubes of appropriate sizes, provided no

Cohesive energy expression 12 evaluated at the equilibriumevidence that they plane cross sections of any of these materials
. : . . were not square. The separatidmsvere measured to be 0.346,
geometry can be written in terms of this variable as (0.695/2), 0.36, and 0.37 nm (or in atomic units: 6.538, 6.567,
2102+ M,(x) 6.803, and 6.992 au). These should be compared with spacings
b n A 6:6 -

U@eb) =~ T@+CX ) —— (72) R.” in bulk KI, Rbl, and Csl of 6.676, 6.937 (ref 43), and
yFﬁ' (ylf'e) 7.210 au (ref 44), respectively, at room temperature, that ambient
in the experimental determination of the nanocrystal structures.

After using 66 to eliminatéh and then dividing the result by  The ratioshy/R%® derived from this experimental data are
67, one obtains compared with the predictions of the present Born model in
Table 11. The results in the second column were derived taking
U(ae by) _ 21In2+ My(x) 2+ Cx’”\ 1 (73) account of any difference between thke factors of the
Ugo(R9) YMg 6 6ny’ }1 1 nanocrystal and those of the bulk using the approach described
' in section 3 based on the assumptions that the individual terms
V«(R) andE(R) are independent of structure with ,furthermore,
The numerical values of this ratio for 2 1 and 2 x 2 their ratio being a constafitndependent of interionic distance.
nanocrystals are presented in Table 10. An absolute value forThe arguments of the type leading to result 54 then show that
the energyU(Re) — U(ae, be), gained on relaxation from the  any differences between theparameters in the nanocrystals
optimal constrained (= 1) structure is derived by subtracting  and in the bulk will cause thie/R%*® predictions derived taking
the value ofU(Re)/Uss(RS® presented in Table 8 from the A = Agg to be multiplied by the factor A/Ase)Y™D. The
corresponding ratidJ(ae, be)/Ue;s(Rg:G) in Table 10 and then respectivelVAg.¢ ratios of 15/14, 51/49, 1.0592, and 1.0928 for
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the four encapsulated systems were derived from 53 using theform Ar—". The structures of such nanocrystals are defined by
values of unity, 1.1, and 1.1 for thefactors of Kl, Rbl, and the distancesa and b between closest ions respectively
Csl, these being reasonable averages of the RIP results for neaperpendicular and parallel to tlzedirection.

equilibrium geometries. The resulting predictions WRS:G The shapes of the nanocrystals, defined by the rafia.,
presented in column 2 were derived takindo be 10.5, 11, were shown to be independent of the strendytbf the short-
and 12 for Kl, Rbl, and Csl, respectively. The predictions for range repulsion. Furthermore, their sizes relative to the bulk,
be were derived as the product of the theoretli#RS®and the  as defined by the ratib/RS® were also found to independent
experimental buIIRS:G. The theoretical predictions in Table 11 of A if this was taken to independent of structure. Hence, the
are entirely consistent with the experimental results in view of only property of this repulsion which governs any of these ratios
the +£0.02 nm (0.38 au) precisiotf¥ 12 of the measured is the rangen of the repulsion, this decreasing with increase of
distances. Thus, there is no evidence that the observed contracn. This shows that the chemical dependence of the structures is
tions have any cause other than those of the interplay betweerdetermined solely by. Both the ratiosk:)e/Rg6 andae/Rg6 were
the point Coulombic attractions and near neighbor short-range shown to be less than unity with/b. being larger than one.
repulsions elucidated here for the free nanocrystals. The All these ratios were shown to become closer to unity on
predictions derived taking account of the structural dependenceincrease of eithen or the crystal cross section as defined by
of A do seem to be in slightly better agreement with the the numbers of rows and columns. Thus, the structure reduces
experiment than those derived takidg= As:s although the to that of the bulk either astends to infinity or as botim, and
experimental precision means that it cannot be stated that them, tend to infinity, the former corresponding to the limit in
latter are not also consistent with the experiment. which the ions behave as hard spheres. The result that the
The prediction from Table 4 that tra/be ratios for all three Madelung binding within a single chain is much greater than
systems are greater than unity, being 1.024, 1.012, 1.011, andhat between different chains, even for those immediately
1.010, respectively, is consistent with the values of 1.156, 1.065, adjacent, explains whig, is less thara., even for the systems
1.083, and 1.108 derived from the experimentally mead®r&d of a 2 x 1 cross section in which each ion experiences two
ae values of 0.4, 0.37, 0.39, and 0.41 nm (or in atomic units: intrachain short-range repulsions but only a single interchain
7.559, 6.992, 7.370, and 7.748 au). This shows that the short-range repulsion.
observation of the gross results that téb, ratios are greater The Born repulsion is actually an effective repulsion com-
than one is a property of the nanocrystal itself and is explicable posed of contributions from the true short-range repulsigb)
from the present theory and that ratios greater than one are nofand the rearrangement energy required to convert a free anion
therefore caused by interaction with the wall. However, the result jnto its form optimal for a crystal with the specified geometry.
that the aJbe ratios predicted for the free nanotube are The A parameter was shown to increase with decreasing
significantly less than the experimental values, even though all nanocrystal cross section if the two components of the effective
ratios are greater than one, strongly suggests that interactiongepulsion were structurally independent. Although the predicted
with the nanotube walls are significant. This conclusion agrees (atiog b/R%® and aJ/R®® were shown to be increased on
with the finding of a previous study°of the encapsulated KI - considering such structural dependencéahe prediction that
system, which used empirical potentials, that the compaied  these ratios are less than one remained unchangedadihe
be ratios were greater than unity but less than experimental (atip remains unaffected by any variationAbetween the bulk
values without considering interactions with the wall. It should g the nanocrystal because this ratio is a property solely of
be noted that the computeg/b, ratio only agreed quantitatively  the |atter. For the single chain system, it was possible to
with experimental value if the nanotube was considered to be jnyoduce explicitly the interionic dispersive attractions rather
surrounded by molten salt. However, there was no such moltenthan allowing these to be considered only implicitly, as in the
salt surrounding the nanotubes during the measurements of theigorn model, through the introduction of both experimental
structures. The importance of iemvall interactions in the jnterionic separations and the usenofalues determined from
determination ofe s reinforced by the predictions, derived from  eyperimental compressibility measurements. It was shown that
the results in Table 4, that/Re® is 0.978, 0.985, 0.992, and  sych explicit introduction of the dispersive attractions increased

0.982 for the three encapsulated crystals. These values, beingpe predicted ratio ofoe/Rf;:e although this still remained
less than unity, are not consistent with the experiment becausegjgificantly less than unity.

each of the lattea values is greater than the corresponding bulk
separationg‘". Furthermore, even after introducing the factor

of (A/As:9)Y™~1 arising on considering the structural dependence
of A, the ratios of 0.982, 0.989, 0.998, and 0.990 predicted for
ag/be remain less than unity.

It was shown that it is useful to consider relaxing the
nanocrystal to its equilibrium structure in two stages from an
initial configuration in which the interionic separations equal
those of the bulk. In the first of these, the nanocrystal is relaxed
under the constraint that = b = R,, this constraint being
removed in the second stage. The r&iRS° was shown to be
less than one and to increase toward unity as either the

This paper has presented a theory of the structure, energeticspanocrystal cross section is increased. This ratio decreases with
and relationships between nanocrystals generated as smalteduction of the nanocrystal cross section because, for fxed
sections of ionic crystals having the rock-salt structure. These the number of short-range repulsions decreases more rapidly
nanocrystals consist afy rows andm, columns of ions of than does the magnitude of the attractive Madelung term. The
alternating charges, the columns being infinite in extent along energy gained in each of these two stages decreases with
the [001z direction. The theory, based on the assumption that increase of crystal cross section amdhere being no energy
these crystals are fully ionic, focuses only on the largest and gain in the hard sphere limit of infinite. The energy gained in
most important terms, namely, the Coulombic interactions the first stage is very much greater than that in the second stage,
between the ions treated as point charges and the short-rangeven the largest value for the latter being only some 3 kJ/mol
repulsive interactions between just immediately neighboring for a 2x 1 LiF nanocrystal. For the 2 2 and 3x 3 Kl systems,
ions. The latter interactions were described in the original Born these energy gains of 0.5 and 0.3 kJ/mol, respectively, are still

6. Conclusions
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less than those of 3.0 and 1.2 kJ/mol in the first stage. Although (7) Mittal, J.; Monthioux, M.; Allouche, H.; Stephan, @hem. Phys.

even the latter energy gains are quite modest, they become moré®tt: 2001 339 311-318. . . -
9y 9 q y (8) Xu, C.; Sloan, J.; Brown, G.; Bailey, S. R.; Clifford Williams, V.;

significant for the smaller crystals with low. Friedrichs, S.; Coleman, K. S.; Flahaut, E.; Green, M. L. H.; Hutchison J.
The first of four principle insights revealed by the present L.; Dunin-Borkowski, R. EChem. Commur200Q 24, 2427-2428.
work is that the experimentally determined values liprare (9) Meyer R. R.; Sloan, J.; Dunin-Borkowski, R. E.; Kirkland, A. I.;

; ; At At ; Novotny M. C.; Bailey, S. R.; Hutchison, J. L.; Green, M. L. Science
entirely consistent both qualitatively and quantitatively with the 2000 289, 13241326,

predictions of the present theory. There is therefore no evidence (1) sjoan, J.; Novotny, M. C.; Bailey, S. R.; Brown, G.; Xu, C.;
that the encapsulating nanocrystal plays any role in determiningWwilliams, V. C.; Friedrichs, S.; Flahaut, E.; Callender, R. L.; York, A. P.
this parameter which has therefore been shown to emerge fromJE-Zchlﬁgﬁn?”bEijSgggd '\é'-z'é-é"liggn'”-BkaWSk" R. E.; Hutchison,
the interplay between just the two largest interactions within 11) Sloan, J.; Friedrichs, S.. Meyer, R. R.; Kirkland, A. 1. Hutchison,
the nanocrystal. However, although the present theory correctly 3. |_.: Green, M. L. Hlnorg. Chem. Act2002 330, 1—12.
predicts thake is greater tharbe, the measured ratios af/be (12) Sloan, J.; Kirkland, A. I.; Hutchison, J. L.; Green, M. L. Gompt.
are significantly greater than the present predictions and, Rend. Phys2003 4, 1063-1074. o
furth h d di h 5:6 (13) Brown, G.; Bailey, S. R.; Sloan, J.; Xu, C.; Friedrichs, S.; Flahaut,
urthermore, the m_easure _|S'Fanegare greatfer_t an tH@e_G E.; Coleman, K. S.; Green, M. L. H.; Dunin-Borkowski, R. Ehem.
values of the bulk in contradiction to the prediction thgRY’ Commun2001, 9, 845-846. ‘
is less than one. This suggests very strongly that interaction 00%2u§§ggéJiéKirgllzrldléAs'zL; Hutchison, J. L.; Green, M. L. @hem.
W|_th the nanotube Wa_II plays a significant role in determining (15) Wilson, M.: Madden, P. AJ. Am. Chem. So001 123 2101
this parameter, a topic to be addressed elsewhere. 2102.

The second main physical insight from the present work is  (16) Wilson, M.J. Chem. Phys2002 116, 3027-3041.
that the molar binding within a single chain of infinite length (17) Wilson, M.Chem. Phys. Let002 366, 504-509.

is significantly greater than that between the chains, thereby Ca%ﬁ)rijgg”jﬁ{‘\;e?s'iffg?ees;heg%jgﬁggqeicfgggms of inorganic chemistry

explaining why the ratio an/be_ is greater than unity even in (19) Weast, R. CCRC Handbook of chemistry and physibsth ed.;
the absence of any encapsulation. This renders fully transparenCRC Press: Boca Raton, FL, 1979. _
the third conclusion that the distanbgis contracted relative (20) Bichoutskaia, E.; Pyper, N. ©hem. Phys. LetR00§ submitted

to the bulk as a consequence of the greater intrachain binding,for(gli;)l',izg(;n'R - Catlow. C. R. A Pisani. C.- Orlando Modell. Simul

the fractional reduction of the Madelung energy on passing from water. Sci. Eng1993 1, 165-187.

the bulk to a nanocrystal being much less than that of the short-  (22) Lowdin, P. 0.J. Chem. Phys195Q 18, 365-375.

range catior-anion repulsion. The fourth insight revealed by ~ (23) Gale, J. D.; Rohl, A. LMol. Simul.2003 29, 291—341.

the present work is that the ratiagb. depend only on the range (24) Wood, C. P.; Pyper, N. Chem. Phys. Let1981, 81, 395-401.

. . 25) Wood, C. P.; Pyper, N. Qhilos. Trans. R. Soc. London, Ser. A
of the short-range repulsion as defined by the Born expoment 1g§6 %ZQ 71-105. P

and not on the strength as manifested by Ahgarameter. (26) Pyper, N. CPhilos. Trans. R. Soc. London, Ser1995 352, 89—
124.
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