
MOLECULAR PHYSICS e2106905
https://doi.org/10.1080/00268976.2022.2106905

PETER GILL SPECIAL ISSUE

Effective hamiltonian of crystal field method for periodic systems containing
transition metals

Ilya Popova, Evgeny Plekhanovb, Andrei Tchougréeffb† and Elena Besleya

aSchool of Chemistry, University of Nottingham, University Park, Nottingham, UK; bA.N. Frumkin Institute of Physical Chemistry and
Electrochemistry RAS, Moscow, Russia

ABSTRACT
Effective Hamiltonian of Crystal Field (EHCF) is a hybrid quantum chemical method originally devel-
oped for an accurate treatment of highly correlated d-shells in molecular complexes of transition
metals. In the present work, we generalise the EHCF method to periodic systems containing transi-
tionmetal atomswith isolated d-shells, either as a part of their crystal structure or as point defects. A
general solution is achieved by expressing the effective resonance interactions of an isolated d-shell
with the band structure of the crystal in terms of the Green’s functions represented in the basis of
local atomic orbitals. Such representation can be obtained for perfect crystals and for periodic sys-
tems containing atomic scale defects. Our test results for transition metal oxides (MnO, FeO, CoO,
and NiO) and MgO periodic solid containing transition metal impurities demonstrate the ability of
the EHCF method to accurately reproduce the spin multiplicity and spatial symmetry of the ground
state. For the studiedmaterials, these results are in a good agreement with experimentally observed
d-d transitions in optical spectra. The proposed method is discussed in the context of modern solid
state quantum chemistry and physics.
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1. Introduction

Ever since the early 19th century, transition metals (TM)
complexes have been amajor focus of research, from the-
oretical and experimental standpoint, leading to major
developments in molecular orbital, crystal !eld, and lig-
and !eld theories. Molecular TM compounds have been
successfully used as photocatalysts [1], as an appropriate
choice of ligand coordination environment can support
the desired reactivity and balance the catalytic proper-
ties with robustness and durability. Some basic issues
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confounding the use of molecular TM photocatalysts
reappear in solid state systems, including possible rapid
deactivation of excited states and sensitivity of mate-
rials to degradation. In heterogeneous catalysis, addi-
tional uncertainties arise regarding the chemical nature
of the active photocatalytic intermediates at the interface.
When photocatalysis occurs, it is often unclear which
electronic states are involved. The active speciesmay have
di"erent density of states, populate with charge carriers
at di"erent rates, and may also interact with one another.
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The complex relationship between electronic and phys-
ical structure in both molecular and solid state systems
containing transition metals can be e"ectively probed
by optical absorption and photoelectron spectroscopy
techniques [2,3].

According to Zaanen et al., [3] TM compounds
can be classi!ed by the relative energies of the fol-
lowing charge #uctuations: in Mott-Hubbard insula-
tors, dni d

n
j → dn+1

i dn−1
j excitations involving the d-d

Coulomb and exchange (U) interactions (i, j are TM
sites); and in charge-transfer insulators, dni → L±dn±1

excitations (L is a hole in the valence band of an anion).
In TM oxides, the energies involved in these excitations
are typically high: 7–10 eV for Mott-Hubbard insulators
[3] and above 5 eV for charge-transfer compounds [3].

Electronic excitations localised inside the d-shell,
known as crystal !eld (CF) excitations, are of the order
of 1–4 eV, and these excitations de!ne the optical prop-
erties (colour which fascinates !rst-year chemistry stu-
dents) and chemical properties (catalysis which fasci-
nates all chemists) of TM solid compounds [4,5]. This
applies not only to well-studied TM oxides but to a wide
range of materials from metal-organic frameworks [6]
to single-atom catalysts deposited on substrates such as
ionic oxides, halogenides and amorphous carbon [7,8].
The properties of TM compounds in the energy range
of 1–4 eV correspond to the electronic states of partially
!lled isolated d-shells [9].

Over the years, various pseudopotential and linear
augmented-plane-wave methods within density func-
tional theory (DFT) have been used to study the elec-
tronic structure of solids containing TMs (see, for exam-
ple, [10–15] and references therein) claiming good com-
putational e$ciency. Although DFT methods typically
provide reliable estimations of the geometry and ground
state energy, it is di$cult to capture !ner details of
the correlated electronic structure using standard DFT
approaches. A correct description of the ground state d-
shell multiplicity and its d-d excitation spectra are known
to be a considerable challenge for DFT, which is a direct
consequence of the incomplete description of important
electronic correlations therein. A relevant representation
of the underlying electronic structure is that of the band
states of an (ionic) insulator supplied with the local mul-
tiplets of d-electrons. This prompts the development of
quantum chemical methods that can achieve an accu-
rate description of the d-shell embedded into a solid
phase/matrix.

This is a challenging theoretical problem which
remains open despite many established and more recent
signi!cant advances in the !eld, and where the celebrated
models of quantum chemistry, such as molecular orbital
(MO) or valence bond (VB) theory, do not provide a

description of the required quantitative accuracy [16].
Main di$culties in providing a quantitatively accurate
description of the d-shell weakly coupled to a solid state
matrix are due to the highly correlated nature of the prob-
lem. The emphasis is to be placed on a correct account
of electronic correlations in the d-shell, which inevitably
becomes a substantial issue oncemodels of a realistic size
are considered.

A detailed description of electronic correlations can
be, in principle, provided by con!guration interac-
tion (CI) method, which, for most chemical problems,
can hardly be used in its original formulation due
to extremely high computational costs. Therefore, less
expensive and approximatemethods are favoured such as
hybrid approaches where electronic sub-systems are con-
sidered at di"erent levels of theory. For example, strongly
correlated d-shell can be described using the fully cor-
related CI approximation, whilst the rest of the system,
where correlations are weaker, can be treated with more
approximate and less expensive methods. In such hybrid
approach, the required approximations can be derived
systematically [17]. A speci!c realisation of this idea has
led to the development of the e"ective Hamiltonian of
crystal !eld (EHCF) method, dating back to 1991, which
was originally developed and successfully applied to TM
molecular complexes [18–22], including spin-crossover
compounds of iron (II) [23,24]. Previously, EHCF has
been applied to predict the ground state and optical
spectra of insulating TM containing solids in the cluster
approximation [25–27]. Although, the results were quite
successful, the inherent limitations of a cluster model
in predicting properties of ionic bulk crystals remain.
This long standing problem requires signi!cant e"orts in
accurate description of the boundary or in studying the
convergence to bulk properties of clusters of increasing
size [28–30].

In this work, we generalise the EHCFmethod to study
the electronic structure and optical spectra of periodic
systems containing transition metals, we test the devel-
oped theoretical framework on well known examples
of TM oxides such as MnO, FeO, CoO, NiO, and we
study TM impurities in theMgOmatrix. In the proposed
approach, EHCF procedure is combinedwith theGreen’s
function (GF) formalism [31,32] suitable for describing
local perturbations in periodic solids, such as atomic
scale defects. In the combined approach, the band struc-
ture of a perfect crystal is !rst calculated and then trans-
formed to GFs of the crystal in the basis of local atomic
orbitals. Either perfect crystal (if the TM ions occupy the
periodic lattice of solid phase) or defect crystal (if the
TMs are impurities or point defects randomly embedded
in the periodic matrix) are produced, whilst d-shell(s)
are excluded at this stage. The in#uence of d-shell(s) on
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Figure 1. Classification of the experimentally observed low-lying transitions in TM oxides.

s- and p-electrons is taken into account following the
methodology described below, which was adopted from
Ref. [17]. The EHCFmethod, in turn, is also modi!ed so
that the de!ned Green’s functions serve as EHCF input.

A brief classi!cation of the experimentally observed
transitions in TM oxides is summarised in Figure 1,
together with the main computational methods used
for their interpretation. Typical Mott insulators cannot
be adequately described by conventional band theory
of solids due to the shortcomings in a correct treat-
ment of the electron correlation and in description of the
localised d-states in the vicinity of the Fermi level. The
band gap in a Mott insulator is between bands of like
character, such as d electron bands, whereas the band
gap in charge-transfer insulators exists between anion
and cation states, such as between O 2p and Ni 3d bands
in NiO [33]. Recent improvements of conventional DFT
o"ermore accuratemethods to describe the band gap and
electronic structure of highly correlated materials. Some
examples include single-determinant methods such as
self-interaction correction [34], or using hybrid DFT
functionals [35], adding explicitly the onsite Coulomb
interaction through various implementations of DFT +
U [36–38], or accounting for the electron correlation
through random phase approximation [39].

The periodic EHCF method, suitable for description
of crystal-!eld transitions inside an individual d-shell,
shares several common ideas with the dynamical mean
!eld theory (DMFT) [40–45] as well as with less expen-
sive DMET [46] and RISB [47] methods which can be
combined with DMFT into a uni!ed framework [48].
These methods are related to embedding of strongly cor-
related atom(s) into a weakly correlated bath (for a recent
review on embedding methods, see e.g. Ref. [49]).

In this manuscript, we compare and contrast the basic
features of both approaches, however, we do not dis-
cuss the delocalised magnetic excitations – magnons –

which are characteristic of transition metal compounds
on the energy scale of several hundredths of electron-
volts. These are described by Heisenberg and anisotropic
exchange interactions models developed for magnetic
materials with correlated electronic structure and signi!-
cant spin-orbit coupling and lay beyond the scope of this
paper.

2. EHCF theory for periodic systems

Derivation of the EHCF theory for periodic systems fol-
lows the same general steps as those for the method
developed for molecules and !nite clusters and described
previously in Refs. [17–20]. In the framework of EHCF,
the space of one-electron states, spanned by local atomic
orbitals, is divided into two sub-spaces: (i) l-space
spanned by s- and p-orbitals of TM atoms and all orbitals
of other (light) elements; (ii) d-space spanned by d-
orbitals of TMs. This division exploits the fact that s-
and p-orbitals experience signi!cant hybridisation and
subsequent delocalisation to such degree that the atomic
(many-electron) states completely lose their identity. The
d-shells, however, are less a"ected by hybridisation so
that electrons in d-orbitals retain atomic-like character,
and these are only split by the (e"ective) crystal !eld.
This argument conforms with the model ideas [9] on the
electronic structure of TM oxides, assumed to be formed
by sp-valence bands of an insulator (similar, for exam-
ple, to MgO for TM oxides in the rock-salt structure)
augmented with the local multiplets of d-electrons.

When multiple TM atoms are present in a periodic
solid, such as TM oxides, the d-space cannot be simply
divided into separate d-shells unless the resonance inter-
actions between themare neglected. To overcome this, we
recollect the two-step procedure, proposed by Anderson
[50,51], for estimating the magnetic interaction of local
momenta residing in di"erent d-shells. The Anderson’s
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recipe [50,51] prescribes that the states of an individ-
ual d-shell of a magnetic ion embedded into insulating
diamagnetic medium (l-space) are obtained using kind
of ligand !eld theory. At this stage, the exchange inter-
actions between TM ions are neglected, and the entire
d-system is divided into separate d-shells. After an ade-
quate description of individual d-shells is obtained, an
estimation of the interactions between electrons resid-
ing in the de!ned magnetic orbitals is constructed. Here,
when describing periodic solids withmultiple TM atoms,
we perform the !rst stage of Anderson’s procedure and
postpone the account of the exchange interactions to a
later stage [21,52].

Once the division of one-electron states into correlated
and uncorrelated subsets is performed, the total wave
function of the system, ! , is presented in a form pre-
scribed by the group function approximation [53] with
a !xed number of electrons in each subset:

Ψ = Ψd (nd) ∧ Ψl (N − nd) , (1)

where Ψl and Ψd are the many-electron wave functions
built in the l- and d-subspaces, respectively (nd is number
of d-electrons in the d-space, and N is the total num-
ber of electrons;∧ stands for the anti-symmetric product
of the wave functions). Since d-shells are the most cor-
related part of the chemical system, the wave function
Ψd is treated using the con!guration interaction (CI)
method [53], whilst the many-electron states built in
the l-subspace can be considered within a one-electron
approximation.

Representation (1) of the electronic structure of a solid
containing a TM ion is, of course, approximate. The
exact wave function contains additional terms describing
various distributions of electrons between the d- and l-
(sub)space. These additional terms are taken into account
by the Löwdin partition technique [54], which projects
the exact wave function with multiple distributions of
electrons between subspaces on the subspace spanned by
the functions with a !xed number of electrons (1). The
exact Hamiltonian of the system is then replaced by the
e"ective Hamiltonian of the form:

He! = PH0P + HRR, (2)

where

H0 = Hd + Hl + Hc, (3)

and

HRR = PHrQ (EQ − QH0Q)−1 QHrP. (4)

In Equations (2)–(4), P is a projector to the sub-
space of the many-electron functions in the form (1),
Q = 1−P, Hd and Hl are bare Hamiltonians for the

d- and l-(sub)systems excluding all mutual interactions,
Hc describes Coulomb interactions between sub-systems
without changing the number of electrons, and Hr
describes resonance interactions between sub-systems.
Operator HRR is the key element as it renormalises the
bareHamiltonian on the account of coupling between the
modelmany-electron states (1) and charge-transfer states
which present in the theory only implicitly. This assump-
tion is only acceptable when, within each d-shell, charge
transfer states are signi!cantly higher in energy than
the d-d excited states, which is, ultimately, the bound-
ary condition for the applicability of the present approach
[19].

Averaging the e"ective Hamiltonian (2), obtained by
the Löwdin partition, over the multiplier functions Ψd
and Ψl yields two separate Hamiltonians for the d- and
l-(sub)systems:

He!
d = Hd + 〈〈Hc〉〉l + 〈〈HRR〉〉l , (5)

He!
l = Hl + 〈〈Hc〉〉d . (6)

In expressions (5) and (6), 〈〈 〉〉d,l stands for averaging
over the ground state of the d- (or l-) system. The e"ective
Hamiltonian (6) for the l-system requires an estimate of
〈〈Hc〉〉d for which a density matrix ρ of the d-shell (sys-
tem) is required. Due to the abovementioned atomic-like
character of the TM d-shell in a crystal environment, the
following simple approximation can be employed [19]:

ρµν = δµν
nd
5
, (7)

where µ and ν numerate d-orbitals. Then 〈〈Hc〉〉d can be
split into

Hintra
c =

∑

i,j∈TM

∑

σ

nd
5

×
[
∑

µ

{
(µµ | ij) − 1

2
(µi | µj)

}]

l+iσ ljσ + h.c.

(8)

and

Hinter
c =

∑

i/∈TM

∑

σ

nd
5

∑

µ

(µµ | ii)l+iσ liσ , (9)

where i, j runs over the atomic orbitals of the l-space,
µ runs over d-orbitals, σ stands for the spin projection,
l+iσ (liσ ) are the operators creating (annihilating) an elec-
tron in the ith AO of the l-space, (µµ | ij) are Coulomb
two-electron integrals, h.c. stands for the Hermitian con-
jugate. The term Hintra

c describes repulsion of electrons
residing on s-, p-orbitals of theTMatom from d-electrons
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of the same atom, while Hinter
c corresponds to the two-

centre two-electron repulsion of electrons of the l-space
from d-electrons.

Having de!ned the e"ective Hamiltonian, the wave
function of the l-system can be obtained using one-
electron (Hartree-Fock) approximation and then used to
calculate the averages 〈〈Hc〉〉l and 〈〈HRR〉〉l entering the
e"ective Hamiltonian of the d-system, which yields

He!
d = Hd +

∑

µ,ν

∑

σ

(
Hintra

µν + Hcf
µν + Hres

µν

)

× d+
µσdνσ + h.c., (10)

where d+
µσ (dµσ ) are the electron creation (annihilation)

operators for the µth d-orbital. E"ective terms in He!
d

involve the following contributions: (i) Hintra
µν describes

interactions of d-electrons with the electronic density
located on the s-, p-orbitals of the sameTMatom; (ii)Hcf

µν

describes interactions of d-electrons with the electron
density located on other atoms/nuclei; it has the form of
classical (Coulomb) ionic crystal !eld matrix elements
[55]; (iii) Hres

µν represents resonance (covalent, charge
transfer) interactions between d- and l-systems, com-
ing from the Löwdin partition procedure (perturbation
theory) – the terms speci!c to the EHCF approach.

The above description can be applied to any chemi-
cal system containing a transition metal atom. Speci!c to
periodic systems is the form of the solution for the elec-
tronic problem of the l-system. In a crystal, it is given
as an assembly of the Bloch states |nk〉 (n is the band
number) expressed as linear combinations of the Bloch
sums

|ak〉 = 1
√
K

∑

r
eikr |ar〉 , (11)

where |ar〉 are atomic (spin-)orbitals of the l-space
located in the rth unit cell of the crystal, k is a vector
in the 1st Brillouin zone, K is a number of unit cells in
the crystalmodel with periodic boundary conditions. For
the periodic l-system, the resonance contribution to the
e"ective Hamiltonian of d-shell is given by Tokmachev
and Tchougrée" [4]

Hres
µν =

∑

n

∑

k
βµnkβνnk

(
)G+

nk (−Id) + )G−
nk (−Ad)

)
,

(12)
where the !rst term in the brackets takes into account the
e"ect of the charge transfer states with an electron trans-
ferred from the d- to the l-system, the second term– from
the l-system to the d-shell, upon the e"ective potential
felt by the electrons in the d-shell; β denotes the reso-
nance (hopping) integrals between the l-Bloch states and

the d-orbitals, Id andAd are ionisation potential and elec-
tron a$nity of the d-shell. Since the electron transfer to
(from) the l-bands happens only for unoccupied (occu-
pied) orbitals, the Green’s functionsG±

nk entering the last
equation are

G+
nk (ε) = lim

δ→0+

(
1 − fnk

) |nk〉 〈nk|
ε − εnk + iδ

, (13)

G−
nk (ε) = lim

δ→0+
fnk

|nk〉 〈nk|
ε − εnk + iδ

, (14)

where fnk is the occupation number of the given l-Bloch
state, which can only have two possible values: 0 for the
vacant states and 1 for the occupied states. Due to the
Kramers-Kronig relations, the real part of theseGFs is the
negative Hilbert transform of the imaginary part. Note
that both functions are de!ned as the analytic continu-
ation from the lower complex half-plane to the real axis.
These functions are evaluated from theGFof the l-system
which is as usually de!ned as

G (ε) = lim
δ→0+

∑

nk

∑

σ

|nk〉 〈nk|
ε − εnk + iδ

. (15)

When addressing Hcf
µν in (10), we note that these inter-

actions of d-electrons with the electron density on
other atoms include the long-range Coulomb part (∼
1/R). In ionic lattices, these long-range contributions are
described using the Ewald summation [56]. This gives
a correct energy shift of d-orbitals in the crystal !eld
of ionic solid, which indirectly a"ects the splitting by
changing the energies of electron transfer between d- and
l-systems (see below). At the same time, the Coulomb
splitting induced by the ions of the crystal itself is not
a"ected by this as more than 99% of its value comes from
the interactions with the 1st and 2nd neighbours of a TM
atom (dipole and quadrupole terms are proportional to
1/R3and1/R5, respectively).

Another important di"erence to the molecular case
comes from the fact that the transfer of electrons takes
place within the d-shell, and not between molecular
orbitals and vacuum. To account for this, one has to
shift the poles of the G±

nk by the interaction gdnk =
−(dd | nk, nk) of the electron (hole) placed to the l-Bloch
state (d-shell) with the hole (electron) located in the
d-shell (l-Bloch state). This shift, however, becomes neg-
ligible in the periodic solid since each individual l-Bloch
state is delocalised over a large (asymptotically in!nite)
number of atomic orbitals, and the electron-hole inter-
actions over atomic orbitals decay as ∼ 1/R with the
distance from a TM atom. These intercations are repre-
sented by two-centre Coulomb integrals; other interac-
tions decay even faster. The value of gdnk is, therefore,
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inversely proportional to the number of unit cells in a
periodic model (see Appendix 1). Following the main
assumption of the EHCF method, denominators (−Id −
εnk,σ ) and (−Ad − εnk,σ ) entering GFs in Equation (12)
must be larger than the energies of the d-d excitations, so
that the integrals gnkd are negligible in comparison.

To evaluate the resonance integrals βµnk over the
d-orbitals localised on the TM atom, it is convenient to
expand l-Bloch states over local atomic orbitals, which
gives

βµnk =
∑

i
〈nk | i〉βµi. (16)

Resonance integrals βµi decay exponentially with the dis-
tance from the TM atom, therefore, the summation is
reduced to a small number of l-AOs. Inserting (16) into
Equation (12) and rearranging the terms leads to the
following expression for Hres

µν :

Hres
µν =

∑

i,j
βµiβνj

(
)G+

ij (−Id) + )G−
ij (−Ad)

)
, (17)

where theGFsG±
ij are now represented in the local atomic

basis. These can be calculated from the retardedGF of the
l-subspace in the same basis, obtained for an ideal peri-
odic l-system or for a defected system if a TM atom/ion
represents a point defect.

3. Implementation

The general methodology described in Section 2 can, in
principle, have various implementations depending on
the chosenmethod of calculating the requiredmatrix ele-
ments. One may recollect ab initio methods [57] where
the integrals are calculated exactly (and the number is
substantial due to the presence of two-electron inte-
grals), projector augmented wave PAW-DFT [58] where
the required matrix elements are derived through vari-
ous localisation/projection procedures, as implemented
e.g. in lobster [59–61] or wannier90 [62] packages,
or semi-empirical methods [63,64] where some parame-
ters are extracted from experimental data and additional
assumptions are made to express the matrix elements.

As proof-of-concept implementation, we !nd a semi-
empirical setup to provide a reasonable compromise
between an agreement with experimental optical lines
and computational e$ciency. The main features of our
parameterisation scheme are:

• one-centre core attraction integrals and Slater – Con-
don parameters are extracted from the experimental
atomic data as described in Ref. [19];

• the number of multi-centre two-electron integrals is
reduced by either zero di"erential overlap (ZDO)

or neglect of diatomic di"erential overlap (NDDO)
approximations, the central andmost successful semi-
empirical methods of quantum chemistry;

• the resonance integrals are calculated using the fol-
lowing approximate expression involving the overlap
integral, Sµν :

βµν = 1/2
(
β0

µ + β0
ν

)
Sµν ,

where the resonance parameters β0
µ and β0

ν are !tted
to experimental spectral data;

• the remaining integrals are evaluated analytically over
STO-based atomic orbitals expressed as a linear com-
bination of Slater-type primitives.

The GoGreenGo software [31], developed previously
formodelling local perturbations in periodic systems due
to chemisorption or point defects, provides the necessary
information on the l-system (geometry, density matrix,
the GF matrix) which is used as an input for the EHCF
program. For the case of TM impurities, GoGreenGo
calculates the density and GF matrices, perturbed due
to the presence of a defect, from the band structure of
an ideal, defect-free solid by solving the Dyson equation.
Popov et al. [31] The band structure of a perfect crystal
can also be pre-calculated using any available software
of choice, including most commonly used VASP [58],
ABINIT [65] or)* (ThetaPhi) [66–68]. More details on
GoGreenGo software can be found in Refs. [31,32].

The combined approach, proposed here, allows to
use GoGreenGo together with the EHCF method for
description of TM point defects in solids starting from
the band structure of an ideal solid. Visual represen-
tation of the data exchange between GoGreenGo and
ECHF is given in Figure 2. Additional input informa-
tion includes the type of parameterisation and basis.
The EHCF program currently supports several semi-
empirical parameterisations: complete neglect of di"er-
ential overlap (CNDO), one of the !rst semi-empirical
methods of ZDO-type; modi!ed neglect of diatomic
overlap (MNDO), AM1, and PM3, all based on the
NDDO integral approximation. Several basis sets of STO
type are available such as single STOs, MAP [69], Bunge
[70], andKoga [71]; these choices can be readily extended
upon demand, and an option of using arbitrary atomic
parameters de!ned by the user is currently under devel-
opment.

All calculations performed in this work use param-
eterisation reported in Ref. [19] for both d- and l-
systems, where one-centre parameters were derived from
the spectral data available for neutral atoms and doubly
charged ions of the !rst-row TMs. The resonance param-
eters were !tted to the optical spectra of [M(H2O)6]2+
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Figure 2. Schematic representations of the proposed methodology and data exchange between EHCF and GoGreenGo modules.

– molecular aqua-complexes [72]. For all oxides, the
band structures of the l-systems were calculated using
the semi-empirical Hartree-Fock method in the basis
of local atomic orbitals. Long-range parts of two-centre
integrals entering matrix elements of the Fockian were
summed over the lattice by the Ewald summation. The
1st Brillouin zone spans (11 × 11 × 11)Monkhorst-Pack
k-grid [73]. Green’s functions were calculated using
GoGreenGo software on an energy grid with a step of
0.01 eV.

4. Results and discussion

4.1. Transitionmetal oxides

In this section, we test EHCF approach against periodic
metal oxides of the !rst row transition metals (MnO,
FeO, CoO and NiO) with rock-salt structure. We com-
pare our numerical results with available experimental
data on optical spectra and previous EHCF calculations
performed within the !nite cluster approach [25] keep-
ing the same set of parameters. For NiO crystal with the
rock-salt structure, band structure calculations of the l-
system consisting of s-, and p-orbitals, performed with
the e"ective Hamiltonian He!

l , yield the density of states
presented in Figure 3. The low-lying wide 2s band located
in the energy interval between – 38 eV and – 17 eV is
not shown in the !gure, which focuses on the vicinity of
the Fermi level. The position of the d-multiplets is set to
− 1

2 (Id + Ad), which, however, does not re#ect the whole
complexity of the electronic structure. Density of states of
the l-system has the shape typical for insulators with the
rock-salt structure, and it is similar for all studied oxides.
NiO is a typical example, and fairly similar graphs of the

Figure 3. Periodic EHCF calculations of (a) total (black) and
orbital projected density of states for NiO: orange – O 2s, blue –
O 2p, green – Ni 4s and red – Ni 4p; (b) resonance term Vresµµ(ε)
defined in Equation (18) for both t2g (blue) and eg (red) d-orbitals.

density of states for the l-systems of the remaining oxides
can be found in Appendix 2.

Figure 3 shows orbital projected density of states. The
highest occupied band, has a shape of two narrow, high
peaks, consistingmainly of oxygen 2p-orbitals with some
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fraction of 2s-orbitals, while the wide low-lying band
corresponds to 2s orbitals. Transition metal 4s- and 4p-
orbitals, on the other hand, provide major contribution
to the conduction band: the !rst peak has a distinct 4s-
character while the others have 4p-character. These fea-
tures become particularly important in the discussion of
the resonance contributions to the e"ective Hamiltonian
Equation (17) for the d-shell.

Atomic charges (Q) and the values of the energy gap
between valence and conduction s,p-bands (Espgap) are pre-
sented in Table 1. The quantity Espgap should not be con-
fused with the experimentally observed band gap, which
is evaluated by taking into account partially !lled d-
multiplets lying between the s,p-valence and similar con-
duction bands. The predicted charges on the metal and
oxygen are signi!cantly lower than the formal charges
of ±2 due to delocalisation of the electron density over
the bands of the crystal. The charges obtained for peri-
odic solids are noticeably greater than those obtained
in the cluster approximation. This can be explained by
the Madelung electrostatic !eld, which cannot be fully
captured in the cluster approach. The values of charges
tend to increase with the cluster size [25], so that some-
what higher values in periodic calculations are antici-
pated. Another noticeable di"erence between these two
approaches is that the e"ective atomic charges in the
periodic model vary only insigni!cantly for di"erent TM
oxides.

E"ective Hamiltonian He!
d , calculated with the den-

sitymatrix andGreen’s functions obtained from the band
structure of the l-system, gives the position and splitting
of d-orbitals into triply (t2g) and doubly (eg) degener-
ate levels as must be expected for the octahedral point
symmetry of the TM environment. The splitting can be
characterised by a single spectroscopic parameter 10Dq,
which is usually known experimentally from the data
on low-lying transitions observed in optical absorption
spectra. Calculated values of 10Dq in comparison with
experimental data and previous cluster model results can
be found in Table 2. For all oxides, our results obtained
in the periodic solid approach reproduce experimental

Table 1. Periodic EHCF parameters of the electronic band struc-
ture of l-system: Espgap is the energy gap between valence and con-
duction s,p-bands, and Q(M),Q(O) are effective atomic charges
on metal and oxygen.

Espgap , eV Q(M) = −Q(O)

periodic model cluster model periodic model cluster model
this work [25] this work [25]

MnO 7.72 9.71 1.21 1.03
FeO 9.30 10.61 1.25 0.96
CoO 11.53 11.25 1.24 0.89
NiO 12.74 11.82 1.23 0.85

Table 2. Periodic EHCF splitting parameter of d-orbitals com-
pared to the experimental data and cluster model calculations
[25]; MAE and MPAE for optical spectra lines are calculated based
on Tables 3–6.

10Dq, eV

periodic model cluster model experiment MAE, eV MPAE, %
this work [25]

MnO 1.35 0.84 1.21 [74], 1.25 [75] 0.08 3.67
FeO 1.38 1.04 1.20 [76,77] 0.16 8.17
CoO 1.27 0.90 1.17 [74] 0.15 7.22
NiO 1.13 0.87 1.13 [2] 0.09 3.47

values for the splitting with a fairly good accuracy; the
relative errors are < 1% for NiO, c.a. 10% for MnO and
CoO, and 15% for FeO. Periodic EHCF yields better
quantitative agreement with experiment than the cluster
approximation, which tends to underestimate the split-
ting. This can be explained by higher charges and higher
population of oxygen orbitals in the periodic model and
by an improved representation of the electronic structure
of the l-system and the covalent terms in the e"ective
Hamiltonian He!

d .
Comparing ionic and covalent contributions to 10Dq

we notice that the electrostatic crystal !eld interactions
cause only ca. 10% of the total splitting, while the major
fraction of it comes from the resonance interactions (17).
The resonance interactions (17) contain a few di"erent
terms, and their in#uence on the splitting needs to be
analysed further. It is obvious that the orbitals centred
at the oxygen atoms nearest to the d-shell of TM play a
central role as the overlap (and resonance integrals) with
the d-orbitals is higher, at least by an order of magnitude,
than for any other atomic orbital in the system. The con-
tribution of the Bloch states |nk〉 to the resonance matrix
element Hres

µν at the energy ε can be characterised by the
quantity

Vres
µν (ε) =

∑

n,k
βµnkβνnkδ (ε − εnk) , (18)

which re#ects the strength of the resonance between
d-orbitals and the Bloch states, taking into account
their density on the energy scale (δ(ε) is the Dirac
delta-function). The resonance matrix elements, Hres

µν ,
in (17) are the Hilbert transforms of the functions
Vres

µν(ε) taken at the particular points−Ad and−Id. Note
that Equation (18) resembles the imaginary part of the
hybridisation operator characteristic to theDMFT theory
(for the discussion see Section 4.3).

Due to the high-symmetry of TM ions in the stud-
ied oxides, both Hres

µν and Vres
µν(ε) are diagonal with two

eigenvalues: one triply degenerate corresponding to µ =
ν = t2g and another doubly degenerate for µ = ν = eg .
The resonance term Vres

µµ(ε) in Figure 3b shows that the
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occupied states have much stronger (by order of magni-
tude) e"ect on the d-shell. This indicates the importance
of the states corresponding to an electron transferred
from the valence bands to the d-shell. The valence band
mostly consists of 2s and 2p orbitals of oxygen atoms
(Figure 3(a)). Therefore, major contributions to the total
splitting are due to 2pσ → eg and 2s → eg charge trans-
fer, in the descending order. The 2pπ → t2g charge trans-
fer provides a small contribution to the splitting (com-
pared to the interactions with eg orbitals) by slightly
shifting t2g states upwards on the energy scale.

We are reminded that the EHCF method represents
the electronic structure of TM oxides as a band struc-
ture of the l-system augmented with local d-multiplets
treated with quantitatively accurate CI method. This
makes EHCF methodology conceptually di"erent from
a variety of solid-state methods widely used to calculate
electronic band structure. The di"erencesmanifest them-
selves in themost apparent way whenwe attempt to com-
pare density of states. Although interpretation of density
of states produced by the EHCF method for the l-system
is straightforward, introducing d-multiplets is not trivial
due to an ill-de!ned character of the conventional con-
cepts within the approximation of electronic structure
underlying ECHF.Due to the local nature of d-multiplets,
a concept of d-band does not naturally appear in EHCF,
and the d-orbital projected density of states can only be
represented as a set of two discrete peaks (δ-functions)
corresponding to t2g and eg orbitals. In addition, there
exists an uncertainty in the position of these peaks on the
energy scale, because ionisation potential and electron
a$nity of d-states are not equal. It means that di"erent
positions of d-multiplets are set depending on the process
of interest: if an electron is removed from the d-shell, the
position of d-multiplets is set at −Id, and if an electron is
added, the position corresponds to the value of −Ad. To
avoid this problem, one can use the value of− 1

2 (Id + Ad)
as a conventional position of d-multiplets, as it is done in
Figure 3, although it is obvious that such representation
does not re#ect the whole complexity of the electronic
structure. Finally, we note that due to the above men-
tioned factors the concept of the Fermi level also becomes
ill-de!ned.

TheCI calculations of the d-shell with e"ectiveHamil-
tonian He!

d produce spin and symmetry of the ground
state along with the energy of excited states correspond-
ing to the observable d-d transitions in optical spec-
tra. These results are compared to experimental lines in
Tables 3–6, whilst themean average andmean percentage
average errors (MAE and MPAE) between the calcu-
lated and experimental spectral lines are given in Table 2.
In general, the proposed methodology gives the correct
spin multiplicity and spatial symmetry of the ground

Table 3. Periodic EHCF d-d transitions in MnO compared to the
experimental data [74] and cluster model calculations [25].

Term periodic model cluster model experiment
this work [25] [74]

6A1g 0.00 0.00 0.00
4T1g 1.90 2.92 2.03
4T2g 2.47 3.30 2.58
4A1g 2.96 3.45 2.95
4Eg 2.96 3.45 –

Table 4. Periodic EHCF d-d transitions in FeO compared to the
experimental data [76,77] and cluster model calculations [25].

Term periodic model cluster model experiment
this work [25] [76,77]

5T2g 0.00 0.00 0.00
5Eg 1.38 1.05 1.20
3T1g 1.42 1.72 –
1A1g 1.40 2.02 –
3T2g 1.92 2.14 –
3T1g 2.58 2.58 2.64
3T2g 2.78 2.79 –
3Eg 2.98 2.94 –
3T1g 3.04 3.00 3.28

Table 5. Periodic EHCF d-d transitions in CoO compared to the
experimental data [74] and cluster model calculations [25].

periodic model cluster model experiment
Term this work [25] [74]
4T1g 0.00 0.00 0.00
4T2g 1.13 0.77 0.90−1.03
2Eg 0.84 1.64 1.61
2T1g 1.88 2.32 2.03
2T2g 1.95 2.35 2.05
4A2g 2.38 1.67 2.14
4T1g 2.39 2.45 2.26−2.33
2T1g 2.41 2.91 2.49−2.56
2A1g 2.90 2.93 2.60

Table 6. Periodic EHCF d-d transitions in NiO compared to the
experimental data [2], cluster model calculations [25], and recent
DMFT calculations of the triplet-triplet transitions [78].

Term periodic model cluster model DFT+ DMFT experiment
this work [25] [78] [2]

3A2g 0.00 0.00 0.00 0.00
3T2g 1.13 0.87 0.93 1.13
3T1g 1.86 1.48 1.55 1.75
1Eg 1.94 2.12 – 1.95
1T2g 3.02 2.92 – 2.75
1A1g 3.11 3.04 – 2.95
3T1g 3.25 3.28 2.91 3.25
1T1g 3.60 – – 3.52

state in all cases, and it allows to predict the energy of
the low-lying excited states in a very good agreement
with experimental observations (MAE does not exceed
0.16 eV, MPAE – 9%). As in the case of 10Dq param-
eter, the periodic version of EHCF method shows an
improvement over the cluster EHCF calculations in terms
of numerical accuracy. Note that in the case of CoO, we
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obtain a di"erent order of the excited 4T2g and 2Eg terms
as compared to Ref. [74]. In all other cases, the calculated
order of excited states and their multiplicity agree with
the cited experimental data.

4.2. Transitionmetal impurities inmagnesiumoxide

Another experimentally well-studied case is provided by
substitutional impurities in MgO where a small frac-
tion of Mg ions is replaced by doubly charged transition
metal ions. In this Section, we consider the electronic
structure and optical properties of Co:MgO and Ni:MgO
solids using the developed periodic EHCF approach. TM
impurity, which forms a point defect in periodic solid,
is treated di"erently to TM in pure oxides, namely the
parameters describing 4sp-orbitals of the TM impurity
are di"erent to those of the 3sp-orbitals of Mg. Starting
from the idealMgO band structure, we evaluate the e"ect
of a local defect on the l-system by applying perturbation
theory as implemented in GoGreenGo. The perturbed
Green’s function of the modi!ed l-system is then used
to construct e"ective Hamiltonian for the d-shell of TM
impurity and calculate its spectrum.

The periodic EHCF density of states for pure MgO
is shown in Figure 4(a). The calculated charge of the
ions is ±0.958. GoGreenGo calculations of Co:MgO
and Ni:MgO show that in both cases perturbations of
the orbital-projected GFs and density matrix elements
decay very fast with the distance from the impurity site,
as anticipated for a 3D insulator. For instance, the atomic
charges (and diagonal density matrix elements) demon-
strate no signi!cant changes starting from the 3rd neigh-
bours. Changes in the atomic charges for the impurity site
and its 1st and 2nd neighbours are collected in Table 7.
The perturbed site-projected density of states for these
sites are shown in Figures 4(b,c) in comparison to the
ideal MgO crystal. From these data we conclude that
impurities have a rather small yet noticeable e"ect on
the electronic structure, which is localised in the vicinity
of the impurity site. The calculated splitting parameters
10Dq for the d-shell of the TM impurity and the energy of
optical transitions are collected in Tables 8–10where they
are compared to experimental data. As one can see, the
predicted theoretical values of 10Dq are overestimated for
both Co:MgO and Ni:MgO. A signi!cant discrepancy of
0.47 eV is observed for Co, whereas for Ni the deviation
is much smaller and lies within an acceptable accuracy of
0.14–0.20 eV.

Our analysis indicates that the errors in the splitting
parameters originate from a poor quality of the ideal
MgO band structure used as a starting point in our
calculations. The most signi!cant contribution to 10Dq
comes from the resonance interaction with the 2p O

Figure 4. Periodic EHCF calculations of (a) total (black) and
orbital projected density of states forMgO: orange –O2s, blue –O
2p, green –Mg 3s and red –Mg 3p; (b) perturbed (red) and unper-
turbed (blue) density of states on the impurity site in Ni:MgO; (c)
same as (b) but for the oxygen sites surrounding the TM point
defect.

Table 7. Periodic EHCF atomic charges induced by the point
defect in Co:MgO and Ni:MgO compared to the corresponding
values in the ideal MgO crystal.

impurity site 1st neighbours 2nd neighbours

MgO 0.958 −0.958 0.958
Co:MgO 1.083 −0.983 0.954
Ni:MgO 1.043 −0.978 0.953

band located just below the Fermi level. Consequently, its
position on the energy scale, relative to d-orbitals, is an
important factor a"ecting the splitting. The position of
the 2pO band in MgO is located higher than that of NiO
by 2.88 eV; at the same time, the experimentalNISTX-ray
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Table 8. Splittingparameter ofd-orbitals for Co:MgOandNi:MgO
compared to the experimental data.

10Dq (eV)

periodic EHCF corrected value experiment

Co:MgO 1.67 1.49 1.20 [80]
Ni:MgO 1.21 1.07 1.07 [81]; 1.00 [82]

Note: Corrected values correspond to the shifted 2pOband as discussed in the
text.

Table 9. Periodic EHCF d-d transitions in Co:MgO compared to
the experimental data [80].

Term periodic EHCF corrected value experiment [80]
4T1g 0.00 0.00 0.00
4T2g 1.50 1.34 1.05
2Eg 0.46 0.63 1.13
2T1g 1.86 1.87 2.13
2T2g 1.95 1.95 2.13
4A2g 2.43 2.42 2.32
4T1g 2.75 2.58 2.43
2T1g 3.18 2.83 2.54
2A1g 3.28 3.11 3.05

Table 10. Periodic EHCF d-d transitions in Ni:MgO compared to
experimental data [81].

Term periodic EHCF corrected value experiment [81]
3A2g 0.00 0.00 0.00
3T2g 1.20 1.07 1.07
1Eg 1.95 1.78 1.68
3T1g 1.97 1.94 1.83
1T2g 3.10 2.96 2.69
1A1g 3.13 3.08 3.04
3T1g 3.36 3.16 3.21
1T1g 3.67 3.54 3.50

photoelectron spectroscopy results [79] indicate that the
di"erence between the Auger parameters 1s – KL2,3L2,3
for MgO and NiO is 1.1 eV. If the 2p O band of MgO
is shifted down by 1.78 eV to make its position to agree
with the experimental data, then the calculated values of
10Dq and optical transitions demonstrate a much better
agreement with experiment. These results are shown in
the third column in Tables 8–10.

4.3. Conclusive remarks

In this work, we propose a quantum chemical method for
computing the electronic structure and optical spectra of
periodic solids containing transition metals with open d-
shells. It combines the EHCF approach, previously used
for !nite clusters, with GoGreenGo software designed
to model electronic structure of materials in the peri-
odic boundary conditions. The developed computational
framework has been used to reproduce optical spectra of
the well-studiedmaterials such as transitionmetal oxides
with the rock-salt structure and transition metal impuri-
ties in the MgO matrix. This combined approach can be

readily employed in more extensive studies on ideal and
defected periodic structures containing transitionmetals.

The EHCF method has apparent similarities with the
dynamical mean !eld theory (DMFT), widely used in
condensed matter physics, in particular, in the DFT +
DMFT implementation. In DMFT, the problem of a
strongly correlated orbital or atom(s) is mapped onto
another problem known as the Anderson impurity prob-
lem (AIP). This simpli!es its solution as, in principle, AIP
can be solved exactly, e.g. using quantum Monte Carlo,
Lanczos diagonalisation, orwith various approximations.
However, the mapping comes at a cost of neglecting the
spatial correlations by focussing on the exact temporal
correlations instead. Within DMFT, information about
the connection of a correlated atom (or subsystem, in
general) to the bath is contained in the quantity called
’hybridisation’, which is a !nite temperature Green’s
function encapsulating the !nite temperature dynamics
of electrons hopping between the correlated atom and
the bath. In DFT + DMFT approach, one has to dis-
tinguish between the Kohn-Sham, or lattice space, and
the correlated, or local sub-space. A connection between
these two unequal spaces is accomplished by downfold-
ing – for going from the lattice to the correlated space and
upfolding – for going from the correlated to lattice space.
The full lattice Green’s function (in the lattice space), if
downfolded and averaged over the Brillouin zone, gives
rise to the local Green’s function in the correlated sub-
space. An analogous operation of integration over the
frequencies, up to a constant coe$cient, produces the
occupationmatrix of the correspondingGreen’s function
states, either lattice or correlated.

The output of the AIP solver is another Green’s func-
tion named the impurity Green’s function. The DMFT
solution proceeds self-consistently, i.e. when the Green’s
functions of the impurity converge. Upon the conver-
gence of DMFT procedure, the electronic density is
updated according to the occupancies of the Kohn-Sham
levels determined from the lattice Green’s function, and
Kohn-Sham Hamiltonian is re-derived with the updated
density giving rise to the new lattice Green’s function.
This outer self-consistency loop proceeds until the elec-
tronic density is converged.

In the EHCFmethod, the e"ective Hamiltonians,He!
d

and He!
l , play a role analogous to the impurity and bath

Hamiltonians of DMFT, whereas the CI solution to the
e"ective Hamiltonian, He!

d , in EHCF corresponds to the
AIP solutionwithinDFT+DMFT. The Löwdin partition
acts as the downfolding within DFT + DMFT, however,
there doesn’t appear to be an upfolding counterpart. This
restricts the applicability of the EHCF method to the
systems where the density reconstruction in the corre-
lated sub-system is relatively weak, such as in the case
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of d-shells in TM impurity or, equivalently, where the
electronic structure of the l-system/bath is not a"ected.

Furthermore, within EHCF, calculations are per-
formed at the CI level of theory thus implying T = 0K,
whilst DFT + DMFT calculations are usually done at
!nite temperature. In addition, the EHCF hybridisation
is only taken into account in the static limit at two fre-
quency points, Id and Ad, as evidenced by Equation (17).
This corresponds to the previously mentioned require-
ment of a signi!cant energy separation between the d-
shells excited states and the states of the electrons trans-
ferred between d-shell and the band l-states. Finally, it is
worth noticing that the d−d optical transitions in NiO
and MnF2 have recently been reproduced within DFT +
DMFT [78].

The periodic extension of the E"ective Hamiltonian
of Crystal Field (EHCF) method presented here is tested
on exemplary transition metal oxides (MnO, FeO, CoO,
and NiO) with rock salt structure and MgO with transi-
tion metal impurities. The tests demonstrate the ability
of the EHCF method to accurately reproduce the spin
multiplicity and spatial symmetry of the otherwise prob-
lematic highly correlated ground states of the studied
materials. The obtained results are in a good agreement
with experimentally observed d-d transitions in optical
spectra.
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Appendices

Appendix 1. Electron-hole interactions in the
electron transfer energies
Integral gdnk describing electron-hole interactions has the fol-
lowing form

gdnk = −(dd | nk, nk), (A1)
where d and nk refer to atomic d-orbitals and Bloch-states of
the l-system respectively. As it is written in the main text, the
latter is expressed as a linear combination of the Bloch-sums
Equation (11):

|nk〉 =
∑

a
|ak〉 〈ak | nk〉 . (A2)

Inserting this into Equation (A1) and employing the ZDO
approximation for two-centre Coulomb integrals we
get:

gdnk = − 1
K

∑

a,r
|〈nk | ak〉|2 (dd | ar, ar). (A3)

Inter-atomic Coulomb integrals entering the last equation
decay as 1/Rwith the distance from the atom where the atomic
orbital d is located. Therefore, the sum in the equation con-
verges to a !nite number describing Madelung !eld acting on
electron (hole) in the d-shell. It means that gdnk ∼ 1/K, where
theoreticallyK → ∞ and in practical calculationsK is equal to
103 − 104.

Appendix 2. Densities of states for all studied
oxides
Total and orbital projected densities of states for MnO, FeO,
CoO and NiO are depicted on Figure A1.
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Figure A1. Total and orbital projected densities of states for MnO (a), FeO (b), CoO (c) and NiO (d). Low lying wide 2s bands located in
the interval from are not shown for clarity. Color code is the same as in Figure 3(a).


