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ABSTRACT: We show that ordered monolayers of organic
molecules stabilized by hydrogen bonding on the surface of
exfoliated few-layer hexagonal boron nitride (hBN) flakes may
be incorporated into van der Waals heterostructures with
integral few-layer graphene contacts forming a molecular/two-
dimensional hybrid tunneling diode. Electrons can tunnel
through the hBN/molecular barrier under an applied voltage
VSD, and we observe molecular electroluminescence from an
excited singlet state with an emitted photon energy hν > eVSD,
indicating upconversion by energies up to ∼1 eV. We show
that tunneling electrons excite embedded molecules into
singlet states in a two-step process via an intermediate triplet
state through inelastic scattering and also observe direct emission from the triplet state. These heterostructures provide a solid-
state device in which spin-triplet states, which cannot be generated by optical transitions, can be controllably excited and
provide a new route to investigate the physics, chemistry, and quantum spin-based applications of triplet generation, emission,
and molecular photon upconversion.
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Two-dimensional supramolecular arrays stabilized by
noncovalent interactions provide a highly flexible route

to the spatial organization, down to the molecular scale, of
functional molecules on a surface.1−4 While this route to
surface patterning has been successful in positioning chemical
groups within adsorbed monolayers, the noncovalent nature of
the stabilizing interactions has limited the possibilities to
explore the transport of charge through the component
molecules. One possible route to explore the electrical
properties of supramolecular monolayers is through the use
of adjacent charge injection layers placed above and/or below
the molecules. This architecture, in which current flows
perpendicular to the plane of the adsorbed molecules, would
require that the supramolecular layer is embedded in a more
complex heterostructure with integral contact and spacer
layers. Although there has been recent progress in the growth
of all-organic epitaxial supramolecular heterojunctions,5−7

these structures cannot currently be prepared with the required
complexity and control. The techniques used to fabricate van
der Waals heterostructures,8 such as a tunnel diode formed by
placing few-layer hexagonal boron nitride (hBN) between two

graphene layers,9 offer an alternative approach. In this Letter
we show that a similar device architecture may be employed to
embed a supramolecular monolayer between two hBN tunnel
barriers, thus forming a hybrid molecular/two-dimensional
(2D) device. The encapsulated organic molecules can be
excited electrically and subsequently relax through the
emission of photons resulting in electroluminescence (EL)
from both singlet and spin-triplet states. Photons are
upconverted by energies up to 1 eV, and we show that
singlets are excited through a multi-electron inelastic process
via a triplet intermediate state. This hybrid structure provides a
solid-state device in which triplets can be controllably excited,
and it offers a route to fundamental studies of long-lived
excitations with non-zero spin and their relevance to low-
voltage light-emitting devices and quantum spin-based
excitonic and electronic devices.
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To fabricate our devices, we use polymer stamp-assisted van
der Waals assembly10−12 to sequentially pick up flakes of few-
layer graphene (FLG) and hBN. hBN flakes with adsorbed
monolayers of organic molecules can be picked up and
deposited as part of the assembly process in the same way as
pristine flakes, thus allowing the integration of molecular layers
within van der Waals heterostructures. We first use a polymer
“stamp” to pick up a large hBN flake (lateral dimensions 10s of
μm, thickness 10s of nm), which is ultimately used to cap the
device. This hBN flake is then used to pick up an FLG flake,
which serves as the top contact, followed by a thin (≤1 nm)
hBN flake, which forms the upper tunnel barrier. The van der
Waals stack is then used to pick up a second hBN tunnel
barrier, also with a thickness of 1−3 monolayers, on which a
molecular monolayer has been deposited by sublimation. This
part-formed tunneling device is then released from the stamp
onto a second FLG flake, which forms the lower contact; the
release site is chosen so that the upper and lower FLG layers
make independent contact with two preformed contacts (10
nm Cr/30 nm Au). Further details are provided in the
Supporting Information.

A schematic of a completed device with an embedded
monolayer of sublimed perylene tetracarboxylic di-imide
(PTCDI) is shown in Figure 1a. The FLG provides
semitransparent top- and bottom-electrodes, and the hBN
layers allow carrier injection via tunnelling under an applied
bias, while suppressing quenching from the FLG contacts.13

PTCDI is a planar molecule and is adsorbed parallel to the
hBN substrate in 2D islands stabilized by hydrogen bonding.14

The islands have monolayer height and typical lateral
dimensions of 5−10 μm, and for the deposition parameters
we use (see Supporting Information) a surface coverage of
50%. The molecular ordering within the islands is resolved
using atomic force microscopy (AFM), which reveals lattice
vectors close to the expected value14 (see Figure 1b). At a large
scale, individual monolayer PTCDI islands may be identified
using optical microscopy during the transfer process (Figure
1c). Images of a completed device are shown in Figure 1d; the
active area of the device (where the upper and lower FLG
layers overlap) is marked. It is possible to selectively
encapsulate a selected monolayer-height PTCDI island in the
active region; for this device we used the island highlighted by
an arrow in Figure 1c, which had been adsorbed on a bilayer

Figure 1. FLG/BN/PTCDI/hBN/FLG heterostructures. (a) Schematic of a device in which a monolayer of PTCDI is encapsulated between two
hBN tunnel barriers, and charge is injected from upper and lower FLG contacts (the upper thick hBN layer and a supporting thick hBN flake,
which provides a supporting substrate for the lower graphene, are omitted for clarity; neither plays an active role in the device operation); (lower
left) schematic of the molecular structure of PTCDI. (b) AFM image of a monolayer-thick island of PTCDI on hBN; the lattice vectors of the
molecular array are marked and have the following values: 1.48 ± 0.1 and 1.78 ± 0.1 nm, subtended by an angle of 89°. (c) Optical micrograph
showing monolayer islands following sublimation of 0.5 monolayers of PTCDI on a bilayer hBN flake (highlighted by dotted outline); this flake
forms the lower tunnel barrier for this device, and the island selected for the active region is marked by an arrownote that the PTCDI grows in a
different morphology on the surrounding SiO2 surface and cannot be resolved in these regions. (d, upper) Optical image of a device showing gold
contacts and van der Waals heterostructure. The active area of the device where the upper and lower FLG layers overlap is highlighted; (d, lower)
optical image of the device taken under bias (VSD = −3.2 V) acquired with an exposure time of 8 s with an overlay also showing the position of the
graphene contacts and confirming that light is emitted from the active area of the device; (inset) the variation of intensity along the horizontal axis
through (on) and away (off) the active region. (e) EL (acquisition time 100 s) and PL spectra of device acquired at liquid helium temperatures; the
PL for an uncapped device is also included highlighting the peak shift due to encapsulation. (f) Current−voltage characteristics. Scale bars (b) 3
nm, (c) 20 μm, (d) 20 μm (upper), and 6 μm (lower).
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hBN flake, which forms the lower tunnel barrier. The effective
area of the device is estimated to be 4 μm2. The deposition of
PTCDI, and the preparation of the hBN surface, is discussed in
the Supporting Information.
The current−voltage characteristics of the device were

measured in an optical cryostat at a temperature T = 6 ± 1 K,
and they are highly nonlinear as expected for a tunneling
device (see Figure 1f). The devices emit light when a current
flows. The EL spectrum acquired for an applied bias VSD =
−3.3 V (Figure 1e) shows an intense peak at the wavelength of
586.1 ± 0.5 nm (2.115 ± 0.002 eV) corresponding to the zero
phonon transition (0−0) from the lowest excited singlet, S1, to
the ground state, S0, accompanied by a satellite vibronic 0−1
peak (633.4 ± 0.5 nm/1.958 ± 0.002 eV). An optical image of
the device under bias confirms that the active region of the
device is the source of the photon emission (Figure 1d). EL
emission is observed in both polarities, and the peak position
varies by less than 0.5 nm over the measured voltage range (see
Figure 2).
The EL peaks are close to the 0−0 transition (588.1 ± 0.5

nm/2.108 ± 0.002 eV) in the photoluminescence (PL)
spectrum of the device (Figure 1e). However, both the PL
and EL peaks are shifted from the 0−0 transition (565.0 ± 0.5
nm/2.194 ± 0.002 eV) measured for uncapped PTCDI (also
shown in Figure 1e) on a single hBN layer by 0.086 ± 0.003
eV (EL and PL spectra are also readily acquired at room
temperature; the PL peak positions are independent of
voltagesee Supporting Information). We previously showed
that, for uncapped PTCDI on hBN, a combination of resonant
and nonresonant interactions between adsorbed PTCDI and
hBN leads to a red shift of 0.31 eV compared with gas-phase
spectra.15,16 A further red shift is expected when a second hBN
layer is added in the encapsulation process due to the
additional changes in dielectric environment. This is discussed
in more detail in Supporting Information, where we calculate
the transition energies of uncapped (2.26 eV) and capped
(2.20 eV) PTCDI and, in particular, a predicted red shift of
0.06 eV, which is due to the addition of a second hBN layer;
these values are in good agreement with our experimental
values.
The EL spectrum of PTCDI exhibits significant upconver-

sion, that is emission of photons with energies hν > eVSD, the
energy gained by a tunneling electron when passing ballistically
between the two contacts.17 This implies that the emission
must occur through a multielectron process, rather than
through simple charge injection into the highest occupied

molecular orbital (HOMO) and lowest unoccupied molecular
orbital (LUMO) levels of the molecule (as might be expected
for a molecular analogue of a van der Waals heterostructure
with a transition-metal dichalcogenide emissive layer13), and is
suggestive of an inelastic scattering mechanism. Figure 3a
shows spectra acquired in this voltage range, and we see a
significant intensity in the 0−0 peak down to |VSD| = 1.6 V and

Figure 2. Voltage map of EL. The EL intensity is displayed as a color map for different voltages (horizontal axis) and wavelengths (vertical axis).
These data show that the EL peak position is constant over the measured voltage range.

Figure 3. Photon upconversion and triplet EL from a FLG/BN/
PTCDI/hBN/FLG heterostructure. (a) Spectra acquired at 6 K with
a 100 s integration time for a series of applied voltages ranging from
−1.4 to −3.0 V; (inset) EL in the infrared plotted together with the
PL spectrum in the same spectral region (black). (b) The EL signal
(with background subtracted) integrated between 550 and 650 nm
and between 950 and 1050 nm, vs current. (c) Logarithmic plot of the
integrated intensity between 550 and 650 nm vs. the intensity
between 950 and 1050 nm showing a near-linear dependence between
the singlet and triplet emission intensities.
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at room temperature (see Supporting Information) down to
1.3 V, implying an upconversion energy much greater than kBT
(ruling out thermal effects) and close to 1 eV. In this device we
also resolve an additional weak peak at 543.8 ± 0.5 nm (2.280
± 0.002 eV). We tentatively assign this feature to a 1−0
vibronic transition, although the possible origin of a PTCDI in
a different trapped conformation cannot be ruled out.
The observation of photon upconversion indicates that

molecules are excited into an intermediate state and then,
through a further excitation, are excited into the singlet excited
state S1. EL is observed in this device for a current density
down to ∼1 pA nm−2, which corresponds, approximately, to an
average time between the traversal of electrons through each
molecule of order 0.1 μs (assuming ∼1 nm2/molecule). The
relevant excitation for the above-threshold emission must have
a lifetime of this order of magnitude (or longer) thus ruling out
mechanisms such as the sequential excitation of vibronic
modes of the S0 electronic ground state, which relax on a much
more rapid time scale. In common with Chen et al.18 we
suggest that the long lifetime strongly suggests that the
intermediate state involved in photon upconversion is a T1
spin-triplet.
The role of triplets is confirmed through the identification of

an additional peak in the EL spectrum at ∼1004 ± 1 nm,
photon energy 1.235 ± 0.001 eV. This peak is not present in
the PL spectrum (see Figure 3a inset), but it is close to the
value, 1.18 eV, of the triplet state of a related PTCDI derivative
determined19 by triplet pair absorption. Accordingly we
attribute this peak to emission from the T1 state. The observed
energy is also close to the energy, 1.29 eV, calculated for this
transition (see Supporting Information).
Figure 3b shows that the emission intensities I(T1) and

I(S1) from, respectively, the T1 and S1 states have a highly
nonlinear dependence on current. A logarithmic plot (Figure
3c) shows a power law dependence of I(S1) on I(T1) over a
large voltage range in both forward and reverse bias, I(S1) ∝
I(T1)

k, where k ≈ 1.2 indicating a near linear relationship.
Assuming that, for a given applied voltage, the number of
excited triplets is proportional to the T1 intensity, triplet−
triplet annihilation (TTA)20 may be ruled out as a route to the
secondary excitation of molecules from T1 to S1, since for this
mechanism a quadratic dependence21 (k ≥ 2) on the number
of triplets would be expected (assuming a low density of
triplets,22 which is likely for the low currents we observe close
to the threshold for emission). We therefore suggest that the
T1 to S1 transition is promoted by a second inelastic electron-
scattering event.
The proposed mechanism is summarized in the band

diagrams shown in Figure 4a,b. No emission is expected until
the energy gained by tunneling electrons, eVSD, exceeds the
energy difference between the S0 and T1 states thus permitting
excitation between these states through an inelastic process.
We also see evidence for inelastic scattering in the electrical
characteristics of the device. Figure 4c shows that a broad peak
is observed in the second derivative of d2I/dV2 at ∼1.1 V, very
close to the triplet energy. Peaks in d2I/dV2 due to inelastic
electron scattering are expected when the voltage drop matches
the energy of an excitation to which electrons are coupled23,24

(similar features in hBN/graphene tunnel devices are observed
to inelastic scattering of phonons25). Molecules in the T1 state
may undergo a further inelastic excitation to the S1 state or
relax via the emission of a photon. This simple model is
consistent with the voltage thresholds, peak energies, and

variation of intensity ratio, which we observe, and it implies
that the inelastic scattering process induces a change in the
spin state of the molecule.
The generation of excitons in our devices shows

fundamental differences to the mechanism in conventional
organic light-emitting diodes (OLEDs), where electrons and
holes are injected from remote contacts and combine to form
both singlet and triplet excitons. The spin degeneracy of these
states typically leads26 to a relative population of singlets and
triplets in a ratio of 1:3. The close proximity of the charge
injection layers (∼1 nm) to the emissive monolayer in our
devices provides a different route, which leads to the selective
excitation of spin triplets.
While the architecture of our devices is significantly different

to conventional OLEDs, we draw analogies with luminescence
generated by the tip of a scanning tunneling microscope27,28

(STML) for which the electrodes and photon source are also
in close proximity, and, moreover, the widely accepted
mechanism for molecular excitation in STML is via inelastic
scattering, and there are reports of photon upconversion.29−31

Furthermore, the efficiency of our devices, typically 10−6−10−8
photons per electron, is similar to that observed in STML
experiments.27 The coupling of tip-induced localized plasmons
to an adsorbed molecule is considered to be the most
significant STML emission process;27 this is unlikely to be
significant in our devices, since the plasmon energy is much
smaller32 (in the range of 100s of meV) for our FLG contacts.
However, recent papers have highlighted the role of triplets in
STML. Specifically, T1 emission33 has been observed in the
STML from perylene tetracarboxylic dianhydride (PTCDA),
although the proposed mechanism involves a charged molecule
and is not accompanied by upconversion. A triplet-mediated
process has been proposed for the upconversion in the STML
of metal-free phthalocyanine;18 this mechanism is similar to
that discussed above, but it is not accompanied by triplet
emission.
These molecular/2D hybrid heterostructures provide an

alternative electronic method to control the excitation of
triplets, a transition that is optically forbidden, and offer a route
to fundamental studies of long-lived optical excitations and

Figure 4. Mechanism and inelastic tunneling spectroscopy. (a)
Alignment of work function of graphene (WGr), hBN bands, and
molecular energy levels under zero bias. (b) Band alignment under
bias VSD; molecule can be inelastically excited when eVSD exceeds the
energy difference between the S0 and T1 states. Molecule undergoes a
further inelastic excitation to the S1 state; photons can be emitted
from a transition to S0 from either the S1 or T1 states. (c) Peaks in
d2I/dV2 occur where eVSD matches the energy of the excitation. Clear
peaks are observed for VSD ≈ 1.1 V close to the value expected for
triplet excitation via inelastic scattering.
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their applications in quantum and spin-based optoelectronics,
and they are also relevant to low-voltage light-emitting devices.
The device architecture has many possible variations in the
choice of contact materials, molecules with higher/lower
energy levels, tunnel barrier width to control the current
density, as well as the scaling of the active regioneither down
to a single or small ensemble of molecules, or up to large-area
device incorporating a complete monolayer. We also envisage
the integration of molecular layers with more complex
multilayer and/or in-plane supramolecular order to control
the coupling of neighboring molecular emitters. These solid-
state devices thus provide a new route to the investigation of
the physics, chemistry, and optoelectronic applications of
triplet generation, emission, and upconversion.
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