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Progress in the theory of electrostatic interactions
between charged particles

Eric B. Lindgren, Ho-Kei Chan,† Anthony J. Stace* and Elena Besley*

In this perspective we examine recent theoretical developments in methods for calculating the electrostatic

properties of charged particles of dielectric materials. Particular attention is paid to the phenomenon of

like-charge attraction and we investigate the specific conditions under which particles carrying the same

sign of charge can experience an attractive interaction. Given favourable circumstances, it is shown that

even weakly polarisable materials, such as oil droplets and polymer particles, can experience like-charge

attraction. Emphasis is also placed on the numerical accuracy of the multipole approach adopted in many

electrostatic solutions and on the importance of establishing strict convergence criteria when addressing

problems involving particulate materials with high dielectric constants.

Introduction

Electrostatic interactions between charge particles impact on
many natural phenomena and human activities. Examples of the
former include cloud formation and the behaviour of volcanic
ash,1–3 whilst in the latter category, powder coating,4 printing,5 food
processing,6 and charge scavenging in coal-fired power stations,7

can be included in a long list of applications where particles are
deliberately charged in order to facilitate particular industrial
processes or operations.8 Underpinning all of these examples
is the need to developing a quantitative understanding of the
electrostatic interactions that exist between charged particles
of widely varying composition. Early research on this topic,
focused primarily on conducting spheres, derives from the
work of W. Thomson (also known as Lord Kelvin) and was
aided by comparatively simple boundary conditions and driven
by a desire to better understand the emerging field of electro-
statics.9 A complete solution to the interaction between two
conducting spheres did not appear until 1964 when Davis used
a bispherical coordinate system to derive an expression for the
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electrostatic force;10 research that has subsequently seen exten-
sive application in the field of cloud physics. The high dielectric
constant of water means that a conducting sphere solution
remains effective to this date. However, the vast majority of
materials from which charged particles are composed, for
example, volcanic ash,2,3 cosmic dust grains,11 printer toner,5

food coatings,6 colloids,12 etc., are not conducting and therefore
require a formalism that is more universally applicable. To this
end, a solution to the more difficult problem of how charged
dielectric spheres interact with one another has been sought for
many years.

Table 1 presents a list of some of the more recent papers
covering the theory of electrostatic interactions between charged
particles. As can be seen, a number of the proposed solutions to
the dielectric sphere interaction problem have built on the early
conducting sphere solution and used image charge theory to

describe the electrostatic interaction between spheres. However,
a number of studies have also adopted a multipole approach
based on a spherical coordinate system, whereby each sphere
possesses a defined set of electrostatic multipoles, the sum of
which describe the total interactive force or energy. An advantage
of this approach is that it can provide a physical picture of the
extent to which the surface charge on both spheres is polarised
through a mutual interaction. When reduced to a point charge –
charged sphere configuration, these theories can provide the
classical electrostatic multipole terms, i.e. ion–induced dipole,
ion–induced quadrupole etc. Very recently, a bispherical rather
than spherical coordinate system has been used to describe the
electrostatic interaction between a charged dielectric sphere and a
planar dielectric surface.18 This new approach has universal appeal
in that it can move smoothly between the solution for a pair of
finite-sized particles and a pair of planar surfaces (see below),

Table 1 A selection of references relevant to recent developments in the theory of electrostatic interactions between charged particles. The list is by no
means comprehensive, but papers have been selected to demonstrate the breadth of applications. Additional reference can be found in the main text

Types of particles Theoretical methods Ref.

Insulating sphere – conducting plane Image charge 13
Dielectric spheres Multipole expansion in Legendre polynomials using spherical coordinates 14
Point charge – metallic or dielectric sphere Image charge/DFT 15
Conducting ellipsoids Finite element methods 16
Dielectric sphere – point charge Multipole expansion in Legendre polynomials using spherical coordinates 17
Dielectric sphere – dielectric plane Multipole expansion in Legendre polynomials using bispherical coordinates 18
Dielectric sphere – dielectric plane Image charge 19
Dielectric sphere – microion (point charge) Image charge 20
Dielectric sphere – conducting plane Image charge 21
Dielectric spheres Spherical harmonic expansion of surface charge density 22
Charge spheres in a plasma Screened Coulomb interaction 23
Dielectric spheres in a dielectric medium Multipole expansion in spherical harmonics 24
Dusty plasma Screened monopole and dipole Coulomb interaction 25
Conducting spheres Charge defined in terms of capacitance coefficients 26
Conducting spheres Image charge 27
Dielectric spheres Image charge 28
Spherical nanoparticles Numerical minimisation of free-energy 29
Dielectric spheres Legendre polynomial expansion in bispherical coordinates 30
Dielectric sphere – dielectric plane Image charge 31
Dielectric sphere – dielectric plane Steady state solution of the Poisson–Nernst–Planck equations 32
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but has the disadvantage of being slower to converge than the
spherical coordinate solution.

For many particulate systems, the particles involved all carry
the same sign of charge, and one of the most interesting results
to emerge from electrostatic calculations is that, under certain
circumstances, like-charged particles can be attracted to one
another;33 indeed, charge scavenging processes taking place in,
for example, clouds and power stations depend on such a
phenomenon.1,7 In this perspective article, we outline some of
the recent developments associated with calculating the electro-
static properties of charged dielectric spheres and in particular
we examine the circumstances under which like-charged parti-
cles of dielectric materials can experience an attractive inter-
action. Due consideration is given to the numerical accuracy of
the multipole approach adopted in some more recent solutions
and also to the importance of establishing convergence criteria
when addressing problems where the dielectric constants are
moderately large.

1. Overview of theory

In 2010 a new theoretical model was proposed for calculating
the electrostatic force between charged spheres composed from
a dielectric material.14 The model describes the electrostatic
interaction between a pair of spheres, with net charges q1 and
q2 (contributed solely from the presence of free charge on the
surface of each sphere), with radii a1 and a2, and dielectric
constants k1 and k2, respectively. The spheres are assumed to be
electrically non-conducting, where electrical conductivity is
defined as the product of carrier mobility and charge density.
Therefore, the non-conducting case implies either the absence
of free charge in the system or, if free charge is present, no
mobility for the free charge carriers. For a homogeneous
polarisable material with a bulk polarisability described by
the dielectric constant, Gauss’ law states that the volume
densities of free charge, polarisation charge, and total charge
(the sum of free and polarisation charge) are proportional. At
the surface of a dielectric sphere, the density of free and total
charge can be described by a set of field discontinuities with
boundary conditions, which involve dielectric constants from
both sides of the surface. For a charged dielectric particle, it is
assumed that the free charge is uniformly distributed on the
surface, which corresponds to the lowest-energy configuration,
and remains immobile during interaction; the latter assumption
is justified by the zero mobility of free carriers. This condition
also implies an absence of free charge inside the particle,
so that only charge on the surface needs to be considered.
The total surface charge density s on a particle can be written as
a sum of contributions from the polarisation charge density
sp and the free charge density sf, i.e. s = sp + sf, where the
polarisation charge varies as a function of the sphere–sphere
separation.

Fig. 1 gives a geometric representation of the problem being
addressed. Two dielectric spheres are suspended in vacuum,
where their dimensionless dielectric constants are defined as

ki = ei/e0 (i = 1, 2) and e0 is the permittivity of vacuum (km = 1).
The charge density obeys boundary conditions that are familiar
to electrostatic theory:34,35

(i) Continuity of the tangential component of the electric
field as a result of the continuity of the electric potential on the
surface of each sphere

n̂� Eri¼aþi
� Eri¼a�i

� �
¼ 0 (1)

(ii) Discontinuity of the normal component of the electric field
due to the presence of a total charge on the surface of each
sphere.

n̂ � Eri¼aþi
� Eri¼a�i

� �
¼ s

e0
(2)

(iii) Discontinuity of the normal component of the electric
displacement field due to the presence of a free charge on the
surface of each sphere.

n̂ � Dri¼aþi
�Dri¼a�i

� �
¼ sf (3)

where n̂ is a unit vector perpendicular to a point of reference on
the surface of a sphere, and the subscripts a+

i and a�i denote
radial positions on the outside and the inside of the surface,
respectively. The electric displacement field D is related to the
electric field E as D = kie0E.

The electrostatic force due to the presence of a total charge on
the surface of each sphere is calculated from a generalization of
Coulomb’s law for point charges and is given by

F12 ¼ K

ð
dq1 r1ð Þ

ð
dq2 r2ð Þ

r1 � r2

r1 � r2j j3
(4)

where r1 and r2 are position vectors at the surface (as shown
in Fig. 1), dq1(r1) and dq2(r2) are the corresponding charge
elements, and K is Coulomb’s constant. The first integral in
eqn (4) takes into account the charge residing on sphere 1
and the second integral is the potential generated by the charge
residing on sphere 2. The electrostatic force, F12, is then
evaluated through a Legendre polynomial expansion of the
electric potential generated by the two spheres as they inter-
act.14 The total surface charge distribution is determined as
a function of the centre-to-centre separation, h and an inte-
gration of the charge across the surface yields the following

Fig. 1 A geometric representation of two charged dielectric spheres
interacting in vacuum.14 Dielectric constants, charges, radii, and the polar
angles of spheres 1 and 2 are denoted as k1, q1, a1, b1 and k2, q2, a2, b2,
respectively. The centre-to-centre separation is defined as h and the
corresponding surface-to-surface separation is given by s = h � a1 � a2.
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analytical expression for the electrostatic force (further details
can be found in ref. 14)

F12 ¼ �
1

K

X1
l¼0

A1;lA1;lþ1
k1 þ 1ð Þ l þ 1ð Þ þ 1

k1 � 1ð Þa2lþ31

(5)

The convention adopted has F12 as negative for an attractive
interaction and positive for a repulsive interaction. Dependence
of the electrostatic force on the separation h is accounted for
by the multipole moment coefficients A1,l, which describe the
mutual polarisation experienced by the interacting spheres as
a function of their dielectric constants (k1 and k2), charges
(q1 and q2) and radii (a1 and a2). Equations describing the multi-
pole moments are given by

4pKa1sf ;1dl;0 ¼
A1;l

alþ11

þ k1 � 1ð Þl
k1 þ 1ð Þl þ 1

X1
m¼0

A2;m
ðl þmÞ!
l!m!

al1
hlþmþ1

(6)

and

4pKa2sf ;2dl;0 ¼
A2;l

alþ12

þ k2 � 1ð Þl
k2 þ 1ð Þl þ 1

X1
m¼0

A1;m
ðl þmÞ!
l!m!

al2
hlþmþ1

(7)

for sphere 1 and 2, respectively. After eliminating A2,l, eqn (6)
and (7) and can be combined to yield A1,j1

A1; j1 ¼ a1V1dj1;0 �
k1 � 1ð Þj1

k1 þ 1ð Þj1 þ 1

a2j1þ11

h j1þ1
a2V2 þ

k1 � 1ð Þj1
k1 þ 1ð Þj1 þ 1

�
X1
j2¼0

X1
j3¼0

k2 � 1ð Þj2
k2 þ 1ð Þj2 þ 1

j1 þ j2ð Þ!
j1!j2!

j2 þ j3ð Þ!
j2!j3!

� a2j1þ11 a2j2þ12

h j1þ2j2þj3þ2
A1; j3

(8)

where a1V1 = Kq1 and a2V2 = Kq2. Taking into account the fact
that A1,0 = 4pKa1

2sf,1 and A2,0 = 4pKa2
2sf,2, the electrostatic force

can be written as

F12 ¼ K
q1q2

h2
� q1

X1
m¼1

X1
l¼0

A1;l
k2 � 1ð Þmðmþ 1Þ
k2 þ 1ð Þmþ 1

� ðl þmÞ!
l!m!

a2mþ12

h2mþlþ3
� 1

K

X1
l¼1

A1;lA1;lþ1
k1 þ 1ð Þðl þ 1Þ þ 1

k1 � 1ð Þa2lþ31

(9)

Eqn (9) gives a simple and well-behaved solution for the
electrostatic force between two charged polarisable spheres as a
function of their separation, h. The first term in the equation is
the Coulomb force between two non-polarisable spheres or
point charges, separated by a distance h. The second and third
terms in eqn (9) account for the contribution polarisation
makes to the overall electrostatic force; these terms are always
negative and represent an attraction between the spheres that
increases in magnitude as a function of dielectric constant.
The effect of these attractive contributions is to diminish the
magnitude of the repulsive Coulomb force, and for certain

combinations of qi, ai and ki, like-charged spheres can become
attracted to one another at short separation. In the limit l = 0,
the first and second terms in eqn (9) represent the electrostatic
force between a charged polarisable sphere and a non-polarisable
sphere (or a point charge), and if taken a step further with q2 = 0,
we obtain a well-known classical electrostatic solution for describ-
ing the attraction between a neutral polarisable sphere and a
point charge.34,35

Although the spherical coordinate solution outlined above
has proved very successful at accounting for a wide range of
experimental data involving pairs of charged particles,36–38 the
formalism has been found not to be suitable for applications to
particle–planar surface interactions. To this end, a new solution
using bispherical coordinates to describe the electrostatic
interaction between a dielectric, charged particle and a planar
dielectric surface was proposed in 2014.18 This approach has
proved to be applicable to charged particles of all dimensions,
but does converge more slowly than the spherical coordinate
solution (see below).

2. Like-charge attraction
2.1 Origin

The attraction between like-charged dielectric particles arises
from a mutual polarisation of surface charge for certain com-
binations of radius, charge, and dielectric constant.33 Fig. 2
shows graphically an example where a specific combination of
charge and radii can result in an attractive interaction. Qualita-
tively, the interaction can be divided into two regions: a long-range
repulsion that is equivalent to the Coulomb force experienced by
two non-polarisable spheres or point charges, described by the
first term in eqn (9), and a dominant short-range attraction due to
mutual polarisation of the spheres, where the second and third
terms of eqn (9) prevail.

Fig. 2 The electrostatic force as a function of the surface-to-surface
separation between two spheres with k1 = k2 = 20, a1 = 20 mm, a2 = 10 mm,
q1 = 10 � 103 e and q2 = 20 � 103 e calculated using eqn (9). Also shown
is a charge density map plotted on the surface of each sphere at s = 1 mm,
(s = h � a1 � a2).
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For the conditions specified in Fig. 2, a calculation has been
made of the surface charge density as a function of the polar
angle bi (Fig. 1). A qualitative picture of how the charge is
distributed across the surface of each sphere is shown in Fig. 2
and more detail is given in Fig. 3. Together these results
illustrate how the interaction between two like-charged parti-
cles can lead to a net attraction when the particles are in close
proximity. As can be seen, the greater surface charge density on
the smaller of the two spheres induces an area of negative
charge on the larger sphere in a region close to the point of
contact (b2 = p � b1 - 0). In turn, the latter induces an area
of enhanced positive charge on the smaller sphere that is
again close to the point of contact. The net effect is that, at
very short sphere–sphere separations, the attraction between
these two regions of opposite charge is stronger than any
Coulomb repulsion between the permanent free charges. How-
ever, this effect only becomes significant at short separation,
and as Fig. 2 shows, attraction is rapidly replaced by repulsion
as s increases.

Materials where a value of ki = 20 might be appropriate
include, for example, liquid droplets composed of compounds
that contain either nitrogen or oxygen atoms, e.g. ammonia or
methanol. It should be noted, however, that the dielectric
constant typically describes the extent to which a bulk material
concentrates electric flux, and when used in the context of a
very small particle, it may lose that significance and instead
take the form of a parameter, which reflects the polarisability of
a particle.

2.2 The effects of size, charge and dielectric constant of the
interacting particles

This section presents a more detailed investigation into the
conditions under which like-charge attraction occurs and
further analysis of the physical significance of this counter-
intuitive phenomenon is given. To explore the consequences of
treating spheres as being composed of dielectric materials,
we present a series of calculations that examine changes in
the strength of like-charge attraction depending on both
the dielectric constants and separation between the spheres.

Increasing ki should increase the contribution that polarisabi-
lity makes towards diminishing the effects of Coulomb repul-
sion between the spheres. For k1 = k2 = 1000, the spheres are
assumed to be approaching the metallic limit. As Fig. 2 would
suggest, changing the separation between spheres can alter the
balance between contributions to the force from long-range
Coulomb repulsion and short-range attractive polarisation. For
six different values of k1 = k2, the magnitude of the electrostatic
force has been determined as a function of charge ratio
q2/q1 ranging from 0 to 10 and radius ratio a2/a1 also ranging
from 0 to 10. These results are plotted in Fig. 4. For the purpose
of comparison, analytical zero force curves obtained from
Lekner’s model,26 which describes interactions between con-
ducting spheres, are presented as light blue lines in Fig. 4.
Analytical zero force curves are calculated from the point on the
curve in Fig. 2 where Coulomb repulsion is cancelled out by
attractive polarisation interactions. As it can be seen, Lekner’s
model agrees almost exactly with results calculated from the
dielectric sphere model with ki = 1000. Broadly speaking each of
the diagrams shown in Fig. 4 can be divided into three regions:
(i) when a2 c a1 the scale of the attractive interaction is
dominated by the ability of the high charge density on the
smaller particle to polarise the larger particle; this can be achieved
even under circumstances where the charge ratio q2/q1 is also
increasing; (ii) as the ratio a2/a1 decreases, the contribution
polarisation makes to the interaction diminishes and the force
between particles becomes dominated by Coulomb repulsion;
(iii) as a2/a1 decreases still further, particle polarisation again
begins to dominate the strength of the interaction, particularly
as the ratio q2/q1 increases. For dielectric particles of any
composition, this latter combination of a2/a1 and q2/q1 would
appear to provide the most favourable conditions for a strong
attractive interaction. As Fig. 4 shows, the dielectric response of
each sphere makes a significant contribution to the nature of
the mutual interaction they experience in close proximity. Even
particles composed of weakly polarisable materials (ki = 2,
Fig. 4a), for example oils, plastics, and dust, can be attracted
to one another at certain values of size and/or charge ratio;
large differences in charge can lead to a particularly strong
attraction. As the dielectric constant increases towards a value
appropriate for water droplets,1 a very significant fraction of the
contour plot denotes the presence of an attractive interaction
between spheres.

The next few examples show how the degree of attraction
between like-charged spheres varies as a function of their
separation. For six values of the surface-to-surface separation
s, the magnitude of the electrostatic force has been determined
as a function of the q2/q1 and a2/a1 ratio ranging from 0 to 10.
These results are plotted in Fig. 5. To better illustrate the effect
of polarisation, and consequently the attractive component
of the force, the dielectric constants have been fixed at a
value of k1 = k2 = 1000. Analytical zero force curves (in blue)
obtained from Lekner’s model for conducting spheres are also
included.26

As the results show, there are clearly defined circumstances
where like-charged particles are attracted to one another,

Fig. 3 The total surface charge density as a function of the polar angle
calculated for the pair of spheres shown in Fig. 2 at a surface-to-surface
separation of s = 1 mm. The charge density on sphere 1 is shown by solid
line and on sphere 2 by dashed line.
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even when the separations involved are comparable to their
size. For example, particles separated by 1 mm could coalesce if
they carry the same amount of charge, but have a radii ratio
of 4 : 1. Both Fig. 4 and 5 show that the attraction between
particles can become markedly stronger if there is a large
disparity in the amount of charge they carry. The latter effect
becomes amplified when it is also accompanied by an increase
in the value of the dielectric constant for the interacting spheres.
It is interesting to note that the results in Fig. 5a would suggest
that particles of radius 1 mm and 10 mm, both composed of
a high dielectric material and carrying a similar amount of
charge, would be attracted to one another over a distance
of 5 mm. Since these effects scale up it is easy to see how
physical processes, such as charge scavenging,1,7 can operate
quite readily under conditions where one of the particles may
have a radius of 1 mm or more. Fig. 4 and 5 serve as replace-
ments for an equivalent plot given in ref. 14 as these earlier
calculations did not take into account all the polarisation
terms necessary to obtain fully converged values of the force

(see below). The good agreement between Lekner’s model for
conducting spheres and the dielectric model with ki = 1000
suggests that results from the latter converge to the correct
limit when the theory is applied to particles with very large
dielectric constants.

As shown in Fig. 4 and 5, the repulsive region always passes
through a point corresponding to a2/a1 = 1 and q2/q1 = 1, i.e. for
identical spheres. Since such spheres have equivalent electro-
static properties, there exists a balance between the mutual
repulsive and polarising effects they exert on one other, and as
a result the spheres present mirror-symmetric surface charge
distributions, as illustrated in Fig. 6.

The mutual polarisation experienced by two identical interact-
ing spheres results in regions of negative and positive polarisation
surface charge. However, as Fig. 6b shows, the total surface charge
density, sp + sf, is positive everywhere on the surface of the
spheres, and therefore the overall force between the particles is
repulsive. In this particular case, polarisation effects merely serve
to weaken the Coulomb repulsion that arises from the presence of

Fig. 4 Contour maps of the electrostatic force (in pN) as a function of the charge ratio q2/q1 and radius ratio a2/a1, for a pair of like-charged spheres
separated by a fixed distance of s = 0.01 mm and with different values of the dielectric constant: k1 = k2 = 2 (a), 5 (b), 10 (c), 40 (d), 80 (e) and 1000 (f). The
radius of sphere 1 is fixed at a1 = 1 mm and charge at q1 = 1 � 103 e. As the dielectric constant decreases the electrostatic force can change from attractive
to repulsive as it shifts towards the Coulomb limit of two non-polarisable spheres. The convention is that a negative force denotes a net attraction
between the particles.
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free charge, and so the net electrostatic force is weaker than it
would be for the same pair of identical spheres but with k1 = k2 = 1,

i.e. for non-polarisable spheres, or equivalently for two point-
charges with q1 = q2 = 1 � 103 e and separated by 0.01 mm.

Fig. 5 Contour maps of the electrostatic force (in pN) as a function of the charge ratio q2/q1 and radius ratio a2/a1, for a pair of like-charged spheres at
various surface-to-surface separations: s = 5 mm (a), 1 mm (b), 0.1 mm (c), 0.01 mm (d), 0.001 mm (e) and 0.0001 mm (f). The value of the dielectric constant
is k1 = k2 = 1000. The radius of sphere 1 is fixed at a1 = 1 mm and charge at q1 = 1 � 103 e.

Fig. 6 Polarisation surface charge density (a) and total surface charge density (b) as a function of the polar angle calculated for a pair of identical spheres
with k1 = k2 = 1000, a1 = a2 = 1 mm, and q1 = q2 = 1� 103 e separated by s = 0.01 mm. The charge density on sphere 1 is shown by solid line and on sphere 2
by dashed line.
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3. Electrostatic force with respect to
system geometry

Much of the research carried out on pair interactions in the
field of electrostatics describes the interacting body as a point
particle, a sphere or a plane. The exact geometry of a system
consisting of a pair of such interacting objects is dependent
upon length scales, namely on the radii of the particles and
their surface-to-surface separation. For example, if the separa-
tion between two spheres is much larger than their radii, the
system approaches the geometric limit of two point particles.
A systematic approach to transformations in length scale has
recently been proposed in the form of a general geometric
representation based on the bispherical coordinate system
introduced earlier.18,39 The formalism introduces a dimension-
less, scaled surface-to-surface separation parameter s* = s/2a,
where s is the surface-to-surface separation and 2a is the distance
between the two inverse points in the bispherical coordinate
system.39,40 For a two-body problem, this approach makes
possible a description covering all possible combinations of

sphere size and surface-to-surface separation.39 The scaled
surface-to-surface separation parameter approaches the limit
s* = 1 if the radii of both spheres are much smaller than the
actual surface-to-surface distance s, i.e. in the limit of two point
particles. At the other extreme, the geometric limit of s* = 0
corresponds to either two planar surfaces or two interacting
spheres with radii that are very much larger than s. Fig. 7 pro-
vides a geometric description of how s* transforms according to
the physical nature of the interacting bodies.

For any given charge ratio q2/q1, the electrostatic force can
now be studied as a function of s* with respect to any given
geometric configuration. As an example, consider a pair of like-
charged spheres with radius a1 = a2 = 1 mm. Let the free charge
on sphere 1 be fixed at q1 = 1 � 103 e such that the free charge
on sphere 2 and the surface-to-surface separation account for
the only two variables in the system, which can be expressed
as the charge ratio q2/q1 and the scaled surface-to-surface
separation s*. Fig. 8 shows how the electrostatic force depends
on these two parameters, for two cases: (a) k1 = k2 = 1000; and
(b) k1 = k2 = 10. For (a), at the limit s* = 0, which can correspond
to either two planar surfaces or two large spheres in very close
proximity, the repulsive force vanishes completely apart from
when q2/q1 - 1; as the charge ratio approaches unity from
either direction, the magnitude of the repulsive Coulomb term
(see eqn (9)) increases gradually until it balances the attractive
polarisation terms of the force. However, under all circum-
stances other than q2/q1 - 1, two like-charged equal-sized
spheres at the limit of s* = 0 will always be attracted to one
another if they are of metallic nature. This result is consistent
with Lekner’s26 conclusion regarding the behaviour of charged
metallic spheres in close proximity. One can note a marked
difference at the limit of s* - 0 for case (b), where the particles
have considerably smaller dielectric constants and are there-
fore less polarisable. The range of q2/q1 values over which the
particles will repel each other is much larger than for case (a)
and overall, the attractive polarisation contributions to the
force are smaller, which means that the region of repulsion is

Fig. 7 A geometric representation of two spheres separated by the surface-
to-surface separation of s = 10 mm: a1 = a2 = 500 m (i); a1 = 5 mm, a2 = 7.5 mm
(ii); a1 = a2 = 0.05 mm (iii). The scaled surface-to-surface separation parameter
s* ranges from 0 to 1 and is shown as a continuum of the values corres-
ponding to all possible combinations of sphere size and separation distance
(adapted from ref. 39).

Fig. 8 Contour map of the electrostatic force (in pN) between a pair of equal-sized, like-charged spheres, with dielectric constants (a) k1 = k2 = 1000
and (b) k1 = k2 = 10. The force is plotted as a function of the scaled surface-to-surface separation s*39 and the charge ratio q2/q1, with a1 = a2 = 1 mm and
q1 = 1 � 103 e. The regions of attractive and repulsive forces are separated by a thin black solid line, which denotes the cases of zero force.
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more pronounced. At the other geometric limit s* = 1 for two
point particles, the attractive contributions to the total force
become increasingly less significant and at some point are
overtaken by a more pronounced repulsive Coulomb component.
Consequently, the forces in both case (a) and (b) are dominated
by the Coulomb term for two point charges and the corres-
ponding contour plots become very similar.

Numerical calculations show that, if the radii of two spheres
and their separation are all multiplied by an arbitrary factor a,
the electrostatic force will change by a factor of 1/a2. This is
illustrated in Fig. 9a and b for plots of the electrostatic force as
a function of the radius ratio a2/a1, and where the force is
shown to have decreased by a factor of 1/100 as the various
length quantities are increased by a factor of 10. Conversely,
if the charges q1 and q2 on two spheres are both multiplied by a,
the electrostatic force will change by a factor of a2. Fig. 10a
and b show how the force as a function of the charge ratio q2/q1

increases by a factor of 100 when q1 and q2 are both multiplied
by a factor of 10. These observations suggest a certain degree of
generality of the results, in the sense that values for the force
can be scaled up or down to any desired order of magnitude.
For example, in the results presented in this paper the values of
force, length (radii and separation distances) and charge are
given respectively in units of piconewton, micrometer and

orders of 103 e; however, contour maps that are equivalent to
those shown in Fig. 4, 5 and 8 can be generated to give micro-
newton forces between particles, with radii and separation distances
in the millimeter range and charges of orders of 109 e.

4. Convergence rates

Since the electrostatic force given by eqn (9) is represented as a
sum of multipole moments, it is instructive to examine how
rapidly the series converges. In a number of applications,
particularly when used in conjunction with water droplets,
the equivalent point charge – sphere series expansion is often
truncated after the first two terms.1 The convergence tests also
provide an opportunity to examine differences between the two
solutions presented using either spherical polar or bispherical
coordinates.14,18 Fig. 11 shows the results of calculations, where
the number of terms in the multipole expansion required to
achieve a precision of ten significant figures in the calculated
electrostatic force has been explored in terms of three variables:
surface-to-surface separation, s; radius ratio, a2/a1; and dielectric
constant, k1 = k2. The influence of the charge ratio q2/q1 is
considered separately in Fig. 12. Since the effects of polarisation
are manifested through the multipole terms in eqn (9), the results

Fig. 9 Plots of the electrostatic force (pN) as a function of the radius ratio a2/a1. The dielectric constants and charges of the spheres are given by k1 = k2 = 10
and q1 = q2 = 1� 103 e, respectively. For (a), the radius of sphere 1 and the surface-to-surface separation are fixed at a1 = 1 mm and s = 0.01 mm, while the values
of these two parameters in (b) are greater by a factor of 10. The force values in (b) are therefore a hundred times less than those in (a).

Fig. 10 Plots of the electrostatic force (pN) as a function of the charge ratio q2/q1. The dielectric constants, radii of the spheres as well as their surface-to-
surface separation are given by k1 = k2 = 10, a1 = a2 = 10 mm, and s = 0.01 mm, respectively. The charge of sphere 1 is fixed at q1 = 1� 103 e and q1 = 10� 103 e
for (a) and (b), respectively. The force values in (b) are therefore a hundred times greater than those in (a).
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in Fig. 4 and 5 would suggest that considerable differences
might be expected in the number of terms required to achieve
convergence when the ratios of particle size and charge are

different from unity and/or when there are variations in particle–
particle separation. Fig. 11a shows how convergence depends on
the particle–particle separation, and as might be expected, the
result reflects the distance-dependences of the multipolar terms
that appear in the series expansion and vary as a combination of
inverse powers of h = a1 + a2 + s (eqn (9)). The first few multipole
terms contributing to the force are monopolar, dipolar, and
quadrupolar in nature, and at sufficiently large distances, namely
where the system is close to the limit of two point charges,
Fig. 11a would imply that only the monopole term prevails (also
see Fig. 2). However, as the particle–particle separation decreases
there is a very evident and rapid increase in the number of terms
required to achieve convergence. In some respects, the number of
terms in the expansion can be considered as an indirect measure
of the level of induced polarisation taking place between two
interacting spheres. At very large values of s there is virtually no
polarisation and therefore a minimum number of terms is
required; however, close to the touching limit of s = 0 the degree
of induced polarisation is very high. As can also be seen, for small
values of s, the spherical polar solution converges with fewer
terms than the bispherical solution.

Fig. 11b shows how convergence of the multipole series
depends on the radius ratio a2/a1, and to simplify the problem,

Fig. 11 Comparison of the convergence conditions for the electrostatic force, obtained using the spherical polar (J)14 and bispherical (&)18 solutions,
between two charged dielectric particles with k1 = k2 = 40, a1 = 2 mm a2 = 1 mm, q1 = 2 � 103 e, q2 = 1 � 103 e, s = 0.1 mm: semi-log plots of the
dependence of the number of terms in the multipole expansion (9) on the surface-to-surface separation (a); on the radius ratio (b); and on the dielectric
constant (c) and (d).

Fig. 12 Semi-log plot of the dependence of the number of terms in the
multipole expansion on the charge ratio, q2/q1. The inset shows an
expanded y-axis. The remaining parameters were assigned the following
values: k1 = k2 = 40, a1 = 2 mm a2 = 1 mm, q1 = 2 � 103 e, s = 0.1 mm. Only
data points taken from the bispherical solution are shown.
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the geometric variables a1 and s have been fixed and only a2 has
been allowed to vary. As can be seen, the number of terms
required to achieve convergence increases as the ratio a2/a1

moves away from unity in either direction; however, for a2/a1 4
1 there is a particularly dramatic increase seen in the number
of terms required. As in the above discussion for Fig. 4, the
occurrence of like-charge attraction is conditional upon either
one sphere being large and very polarisable or being very small
and carrying a much higher free charge. In the situation where
a2/a1 B 1, neither of these conditions is met, and therefore
the number of terms required to describe the effects of polari-
sation reaches a minimum. With a progressive decrease in a2

the system begins to resemble the point-charge – sphere case,
where mutual polarisation no longer occurs and the number of
terms needed to account for the behaviour of (a fixed radius)
sphere 1 rapidly reaches an upper limit. In contrast, a progres-
sive increase in the radius of sphere 2, such that a2/a1 4 1,
moves the system towards the planar surface – sphere limit.
Hence, as a2 increases (whilst maintaining fixed values for a1

and s) the polarisable volume available within sphere 2 increases
rapidly, and this is reflected in the number of terms required to
achieve convergence.

A particle in an external electric field has a polarisability that
is proportional to (ki � 1), and for larger values of the dielectric
constant ki, a particle will have a greater degree of freedom to
counterbalance an external electric field and so minimize the
system’s electrostatic energy by means of an induced polarisa-
tion charge. At the limit of infinite ki, a particle will enjoy
complete freedom to polarise itself to achieve energy minimiza-
tion. This is analogous to the case of a charged metallic sphere,
where the charge is free to redistribute instantaneously in an
electric field to achieve energy minimization. Zettergren et al.
have shown theoretically15 that a charged sphere of infinite
dielectric constant will achieve the same lowest-energy charge
distribution as a charged metallic sphere, if they are placed in
the neighborhood of a point charge. Fig. 11c and d show the
behaviour of the two mathematical solutions in response to
changes in the value of the dielectric constant assigned to
each particle. While there is a marked difference between the
two cases for relatively small values of the dielectric constant,
in both cases the number of terms required for convergence
approaches a constant value for increasing dielectric constant,
and it eventually flattens out once the charge distribution
corresponding to the lowest electrostatic energy is achieved.
On the other hand, while the difference between Fig. 11c
and d would imply that fewer terms are needed in the
spherical polar solution to provide an accurate representation
of the polarisability of a particle, from either solution it is
evident that a considerable number of terms is required to
provide an accurate description of the interaction between
highly polarisable particles, such as two water droplets.1 As
noted earlier, although slower to converge, the strength of the
bispherical solution lies in the ability to model particle–surface
interactions.

Fig. 12 shows how the convergence conditions vary with the
ratio q2/q1, where in contrast to the previous tests shown

in Fig. 11, the number of terms in the multipole series
fluctuates as the charge ratio changes. Although an increase
in charge on sphere 2 does increase the degree of polarisation
present on sphere 1, the conditions presented in Fig. 12 are
such that polarisability of the latter is constrained by a fixed
radius. Since polarisation effects depend on the size of the
interacting spheres, fixed radii (limited area) imply that the level of
polarisation becomes saturated, even if the spheres continuously
acquire more charge. The y-axis on Fig. 12 is deliberately set to be
the same as that for Fig. 11b in order to show that response of the
multipole expansion to changes in q2/q1 is reduced significantly
from that seen for changes in particle separation, radius and
dielectric constant. However, there are fluctuations in the
conditions necessary for series convergence and these can be
seen on an expanded scale in the inset to Fig. 12. In response to
changes in q2/q1, there is no significant difference between the
two mathematical solutions.

As a final contribution to this discussion on convergence of
the multipole expansion of the electrostatic force, we examine
the consequences on the calculated force of neglecting higher
order terms in the expansion. Two examples are considered
using the parameters presented in the inset of Fig. 13. The first
example is where ki = 5 and might be appropriate for an inter-
action between charged oil droplets, and the second example is
where ki = 80 and closely corresponds to conditions of water
droplet size and charge that match the charge scavenging
mechanism used to describe the growth of water droplets in
clouds.1 Fig. 13 shows the percentage error in the calculated force
obtained by truncating the terms higher than n. For example, if a
calculation of the electrostatic force between two water droplets
separated by 1 mm just used the first 10 terms in the multipole
expansion, then the final result would be in error by B35%. To
maintain the same percentage error when the surface-to-surface
separation is reduced to 0.1 mm it would require over 20 terms.
Even for materials with a low dielectric constant, there would
appear to be a need for significantly more terms than just the

Fig. 13 Plot of the percentage error in the calculated electrostatic force
with respect to the exact value (with a precision of ten significant figures) as
a function of the number of terms, n in the multipole expansion (eqn (9)).
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usual charge – induced dipole to give a quantitative account of a
particle–particle interaction.

Conclusions

The development of a theoretical understanding of how
charged particles interact with one another has a long history,
which began in the 1840’s with the seminal work of Kelvin on
conducting spheres. However, recent advances in science and
technology have demonstrated the need for a comprehensive
theory that can embrace the far broader topic of dielectric
particles. Within this remit are particulate materials and appli-
cations ranging from volcanic and power station ash through
paints and ink jet prints and on to colloidal suspensions of
tailor-made nanoparticles.

The recent contributions14,18 to existing solutions to the
problem of electrostatic interactions between charged dielectric
particles have shown excellent quantitative agreement with
experimental measurements of the force between charged micro-
spheres suspended in non-polar solvents.37 Measurements of the
repulsive Coulomb force between poly-methyl methacrylate
spheres suspended in hexadecane, which contains a variable
concentration of sodium-aerosol-OT acting as a charge control
agent, is a relevant example.41,42 Under conditions of very low
ionic strength, the agreement between experiment41,42 and
theory14 across a large data set is excellent. The proposed
theoretical solutions14,18 also take into account a dynamic distri-
bution of surface charge on the interacting particles that can be
displaced in response to both the strength of the electrostatic
interaction and the separation distance. A net effect of the surface
charge displacement is to reduce the magnitude of the electro-
static repulsion experienced by the particles with respect to that
determined directly from Coulomb’s law. As a result, the inter-
acting particles are able to accommodate more charge than
would be apparent from a direct fit to the Coulomb law.37

With the emergence of appropriate theories has come a
better understanding of the physics that is responsible for the
electrostatic interactions that govern how the dielectric parti-
cles might behave. In particular, it has been shown that the
forces responsible for like-charge attraction between particles
depend critically on the polarisabilities of the materials involved
and that, given the right circumstances, even weakly polarizable
spheres, such as oil droplets, can exhibit a like-charge attraction
that might be strong enough for the droplets to coalesce.

There are additional aspects of the theory that will need to
be addressed in the near future. What has been outlined above
holds only for particles suspended in vacuum. Whilst that is
sufficient for very many applications, there are equally signifi-
cant problems associated with particles held in a medium. The
introduction of a medium might also need to take into account
cases with the presence of an electrolyte, which charged particles
may need in order to remain in suspension. Current theories
covering the behaviour of charged particles in a dilute solution
of an electrolyte do not support the possibility that like-charged
particles may be attracted to one another. The implications of

such behaviour for electrostatically driven processes in a medium,
such as self-assembly, would be of great interest from both the
scientific and engineering points of view.
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