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The physical properties of a wide range of nonchiral single-walled carbon nanotubes �SWNT� and double-
walled carbon nanotubes �DWNT� with nonchiral commensurate walls are studied. Equilibrium structures of
SWNT and DWNT, as well as the interwall interaction energies of DWNT, are computed using a local density
approximation within density functional theory with periodic boundary conditions and Gaussian-type orbitals.
Based on ab initio structural characteristics, elastic properties of SWNT and DWNT are calculated. Relative
motion of the walls of DWNT with different radii and chiralities is explored using ab initio results for the
interwall interaction energies. Relative positions of nonchiral commensurate walls of DWNT which correspond
to extrema of the interwall interaction energy are derived. For DWNT with incompatible rotational symmetries
of the walls, the possibility of orientational melting is predicted. Ab initio values of barriers to relative rotation
and sliding of the walls of DWNT are used to calculate threshold forces. For nonreversible telescopic extension
of the walls, maximum overlap of the walls for which threshold forces are greater than capillary forces is
estimated. A method for selecting pairs of nonchiral commensurate walls in multiwalled carbon nanotubes
�MWNT� is proposed.
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I. INTRODUCTION

Carbon nanotubes are promising material for potential
components of future nanoelectronic and nanomechanical
devices.1–4 Weak interwall interactions within MWNT pro-
vide perfect bearing for possible novel nanodevices based on
relative sliding, rotation, or screwlike motion of the
walls.5–10 Theoretical study of the interwall interaction and
relative motion of the walls in carbon nanotubes holds the
key to success of these applications.

Neglecting their structure at the ends, which can be either
open or closed, carbon nanotubes are single or multiple lay-
ers of a cylinder rolled up from graphene sheets. Only one
parameter is needed to fully determine the structure of the
middle section of a SWNT: the chirality index �n, m� which
corresponds to a two-dimensional lattice vector c=na1
+ma2, where a1 and a2 are equivalent lattice vectors of
graphene.11 A segment defined by the vector c becomes the
circumference of cylindrical surface of a nanotube wall
which can be well modeled by an infinite tube, where peri-
odic boundary conditions are applicable.12 Two types of
SWNT characterized by the chirality index of �n, n� and �n,
0� have a simple translational symmetry, and these are re-
ferred to as armchair and zigzag nanotubes forming different
pattern of hexagons in circumference. DWNT consist of two
coaxially arranged SWNT with the interwall distance close
to the graphite interlayer distance of 3.335 Å.13

The walls of DWNT are commensurate if the ratio of the
lengths of their unit cells is a rational fraction. In this case, a
DWNT is a quasi-one-dimensional crystal with the length of
unit cell equal to the lowest common factor of the lengths of

unit cells of constituent SWNT. Lack of commensurability
between the neighboring nested SWNT implies a dramatic
weakening of the corrugation in the interwall interaction
potential.14 Barriers to the relative motion of the commensu-
rate walls of sufficiently long DWNT are proportional to the
nanotube length: �U=�UcNc, where �Uc is the barrier per
unit cell and Nc is the number of unit cells in the nanotube.
Conceivably, there is a possibility of fabrication of DWNT
with commensurate walls with a custom-ordered value of
barriers to relative motion of the walls. Therefore, these
DWNT can be considered as potential components in nan-
odevices for which a precise control of motion of the walls is
required. In contrast to the commensurate case, barriers to
relative motion of incommensurate walls of DWNT do not
increase with the nanotube length, but fluctuate near the av-
erage value.5,6,15 Such incommensurate systems, even if they
contain thousands of carbon atoms, have barriers to the rela-
tive motion of the walls comparable to those of a single unit
cell. These systems hold promise for application in mechani-
cal elements, providing perfect bearings for possible
nanodevices.7–9,16

The most commonly used convention employs the term
“commensurate walls” for the walls which are commensurate
with their structures obtained by graphene plane mapping on
a cylindrical surface with the bond lengths kept constant
�see, for example, Refs. 14, 15, and 17–20�. Otherwise, the
walls are defined as incommensurate. However, the bond
lengths of the walls of nanotubes slightly differ from those in
graphite, and for this reason the lengths of unit cells of iso-
lated commensurate walls are also slightly different. Inter-
wall interactions in DWNT lead to the contraction �or expan-
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sion� of the walls and consequent change in the lengths of
their unit cells. The lengths of unit cells of constituent com-
mensurate walls may become equal as a result of the inter-
wall interaction �commensurate phase of DWNT� or the
walls of DWNT may have a periodic structure of alternating
near commensurate regions and incommensurability defects
�incommensurate phase of DWNT�.

The majority of DWNT with commensurate walls have
been studied with semiempirical pairwise potentials for the
interaction between atoms of neighboring walls.14–18 These
studies detect the qualitative difference between the relative
motion of chiral and nonchiral commensurate walls of
DWNT. The motion of the walls of DWNT is determined by
a potential surface of the interwall interaction energy as a
function of relative displacement of the walls along the
DWNT axis and angle of their relative rotation. For DWNT
with chiral commensurate walls, the interwall interaction en-
ergy surface is extremely flat and corrugations of the surface
are smaller than the accuracy of calculations.17,18 The density
functional theory �DFT� calculations of Ref. 21 confirm this
qualitative result using the �8,2�@�16,4� DWNT as an ex-
ample. In this case, the reason for the nearly perfect flatness
of the interwall interaction energy surface is a very high
density of equivalent minima on the surface attributed to the
incompatibility of helical symmetries of the chiral walls.15

For DWNT with nonchiral commensurate walls, semiempir-
ical calculations show that there always exists an experimen-
tally observable barrier to relative sliding of the walls along
the DWNT axis. Only few such DWNT also have the experi-
mentally observable barrier to relative rotation of the walls.
These DWNT have compatible rotational symmetries of the
inner and outer walls.17,18 For this reason, DWNT with non-
chiral commensurate walls and incompatible rotational sym-
metries of the walls were proposed as possible rotational
nanobearings.18

It has been shown in Ref. 21 that the use of semiempirical
interatomic potentials fitted to graphite properties is insuffi-
cient for quantitative estimations of barriers to the relative
motion of the walls for nanotubes with small radii. Barriers
to the relative rotation and sliding of the walls calculated for
the �5,5�@�10,10� DWNT with the Lennard-Jones inter-
atomic potential16,18 underestimate the ab initio results21,22

by about an order of magnitude. Barriers obtained using the
Kolmogorov-Crespi semiempirical potential17 are signifi-
cantly higher than ab initio results. The positions of the
minima of the interwall interaction energy surface of the
�5,5�@�10,10� DWNT calculated using the Lennard-Jones
potential19 are shifted in both sliding displacement and rota-
tion angle by half a period in comparison to the ab initio
results.21,22 The presence of two equivalent extrema per unit
cell in the interaction energy surface of the �5,5�@�10,10�
DWNT found by the tight-binding method23 contradicts the
anticipated topological theorem.19 For the �5,5�@�10,10�
DWNT, the results of Ref. 21 obtained using the local den-
sity approximation �LDA� within DFT give correct positions
of extrema in the interaction energy surface.

The standard DFT, based on �LDA� or semilocal
generalized-gradient approximations �GGA� of electron cor-
relations, cannot capture the key long-range van der Waals or
dispersion interactions, which are extremely important in

graphitic systems. As a result, neither of the standard density
functionals can provide consistent and accurate results for
such systems. A successful DFT approach has to account for
both the strong local intralayer bonds between the atoms and
weak nonlocal van der Waals interlayer interactions. Much
progress has been recently made to finding solution to this
nontrivial problem. New modified density functionals which
encompass nonlocal correlations between the electrons have
been proposed24–28 and thus should successfully capture the
nonlocal nature of van der Waals interactions and test the
adequacy of LDA approach. .

Another well-established local density functional �LDF�
approach is based on the fitting-function technique of Boett-
ger, which employs the all-electron full-potential liner com-
binations of Gaussian-type orbitals �GTO�.29 The underlying
GTO fitting-function technique in LDF calculations is suc-
cessfully used in the solid-state community to calculate the
energetics,30 electronic structure,31 equations of state, and
elastic constants32 for crystalline graphite, fullerenes, and
carbon nanotubes. For example, the all-electron LDF calcu-
lations of Ref. 30 give the following values for basal-plane
binding energy of graphite: 80 meV/atom for the Perdew-
Zunger LDF exchange-correlation functional and
90 meV/atom for the Heden-Lundqvist LDF functional.
However, these values remain roughly a factor of 2 larger
than the experimental values of 43 meV/atom �Ref. 33� and
35±10 meV/atom �Ref. 34�.

In present study, we use the standard Perdew-Wang
exchange-correlation functional35 together with the Gaussian
basis set for carbon which has been optimised for graphite.
Such a LDA-DFT-based approach has been used in Ref. 36
and reproduced very well experimental values for the basal-
plane binding energy of graphite. The LDA-DFT binding
energy of 35 meV/atom reported in Ref. 36 is in excellent
agreement with the experimental value of Ref. 34. The ap-
plicability of this approach is further endorsed by recent
quantitative studies of properties highly sensitive to the in-
terlayer interaction, such as the elastic and electronic prop-
erties of graphite. For example, the LDA-DFT C44 elastic
constant for basal shear is computed to be 4.20 GPa,36

whereas experiment37 gives 5.05±0.35 GPa.
In order to explore the experimental range of the interwall

distances in DWNT varying from 3.3 to 4.5 Å, the LDA-
DFT study has been extended to a set of DWNT with non-
chiral zigzag �n,0� and armchair �n,n� commensurate walls of
compatible and incompatible rotational symmetries and with
different interwall distances. Ab initio equilibrium structures
and elastic properties of DWNT have been obtained taking
into account compression and expansion of the walls due to
their interaction. These were subsequently used to derive
analytically properties of DWNT which characterize relative
motion of their walls. Possible relative positions of the non-
chiral commensurate walls of DWNT which correspond to
extrema of the interwall interaction energy have been de-
rived. A method for selecting pairs of nonchiral commensu-
rate walls in MWNT, based on measuring the maximum
overlap of the walls for which threshold forces are greater
than capillary forces, has been proposed. For DWNT with
incompatible rotational symmetries of the walls, the possibil-
ity of orientational melting—i.e., rotation of the walls caused
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by an increase of temperature—has been predicted. This pre-
diction is based on ab initio results, which give extremely
small barriers to the relative rotation of the walls of such
DWNT.

The paper is organized as follows. Sections II–IV present
ab initio calculations of the physical properties of a wide
range of nonchiral SWNT and DWNT with nonchiral com-
mensurate walls. Equilibrium structures of SWNT and elastic
properties of SWNT and DWNT are given in Sec. II. Inter-
wall interaction energies, relative positions of the walls cor-
responding to the energy minimum �equilibrium structure�,
and barriers to relative sliding and rotation of the walls are
evaluated in Sec. III. Section IV gives the results of calcula-
tions of the threshold forces for the relative sliding and rota-
tion of the walls and maximum overlap of the inner and outer
walls for which the controlled reversible telescoping can be
achieved �the pulled-out wall could be completely pushed
back by capillary forces restoring a DWNT to its original
retracted condition�. Our conclusions are summarized in Sec.
V.

II. EQUILIBRIUM STRUCTURE AND ELASTIC
BEHAVIOR

The properties of nonchiral SWNT and DWNT have been
studied using the AIMPRO ab initio code.38 Within the AIM-

PRO code, the localized orbitals are taken to be Cartesian
Gaussian functions. Basis sets are labeled by the orbital sym-
bols. Each symbol stands for a radial Gaussian of a given
exponent giving rise to basis functions which are a product
of this radial Gaussian with spherical harmonics which have
angular momenta from 0 �s orbitals� to the value given by the
letter �1 for p, 2 for d, etc.�. In this work, the pdddp �in order
of increasing value of exponents� basis set is used as it gives
the lowest total energies for both SWNT and DWNT. Inte-
gration over the Brillouin zone is approximated using the
Monkhorst-Pack method39 with 18 k-point sampling for
DWNT with armchair walls and 15 k-point sampling for
DWNT with zigzag walls.

In calculations of the equilibrium structure of SWNT’s,
the lattice parameter t �translational length of the unit cell� is
optimized to obtain the value ts which corresponds to the
equilibrium structure. Total energy Utot and structural char-
acteristics are computed ab initio for 10–15 fixed values of
the lattice parameter t �different values of t correspond to
different “quasiequilibrium” bond lengths�. The dependence
of the total energy on the length of the unit cell is then
interpolated using Hooke’s law

Utot�t� = Us�ts� +
��t − ts�2

2
, �1�

where Us is the total energy of the equilibrium structure and
� is the elastic constant of SWNT with length of the unit cell
equal to ts. The values of Us, ts, and � are calculated using
the least-squares technique. The total energies Us of the equi-
librium structure calculated using elastic theory are in excel-
lent quantitative agreement with the ab initio LDA-DFT total
energies obtained with the AIMPRO code. For example, elastic
theory gives Us=114.1435 a.u. for the �5,5� SWNT, Us

=228.4791 a.u. for the �10,10� SWNT, and Us
=456.9884 a .u. for the �20,0� SWNT, whereas the corre-
sponding AIMPRO values are 114.1463 a.u., 228.4793 a.u.,
and 456.9887 a.u.

Young’s modulus of a SWNT is obtained as follows:

Es =
�ts

2�Rw
, �2�

where R is the radius of a SWNT which corresponds to the
equilibrium structure and w=3.4 Å is the effective thickness
of the wall.40–45 The characteristics describing the equilib-
rium structure of SWNT and their elastic properties are given
in Table I.

The following conclusions can be reached on the radial
dependence of the structural parameters of the nonchiral
SWNT.

�1� For both armchair and zigzag SWNT, the length of
the unit cell increases as the radius is decreased. This result
differs from the DFT calculations of Refs. 46 and 47 which
show significant fluctuations of the length of the unit cell as
a function of the radius.

�2� For both armchair and zigzag SWNT, two nonequiva-
lent bond lengths are identified: those which are oriented
around the belt of the tube �referred to as b1� and those
parallel to the tube axis �referred to as b2�. For the armchair
�n, n� SWNT with n=4–7, both b1 and b2 bond lengths
increase as the radius is reduced, in agreement with results
reported in Refs. 41,46,47; similarly to Refs. 46,47, the de-
pendence of the nonequivalent bond lengths on the radius is
not monotonic if n=10–12. For n=4–7, the difference �b
=b1−b2 is several times higher than that predicted for n
=10–12. This result agrees qualitatively with Refs. 46,47;
however, we obtain considerably smaller values of �b. For
zigzag SWNT, the b2 bond length increases as the radius is
reduced remaining greater in magnitude than the b1. The
difference �b also grows with decreasing radius, and it is
several times greater for the zigzag SWNT than the armchair
SWNT with similar radius. These trends are in agreement
with Refs. 46–48.

The values of Young’s modulus of SWNT are tabulated in
Table I and compared with the literature data. The results
obtained using formula �2� coincide within 10% with the best
values of Young’s moduli calculated by the Hartree-Fock
method,40 plane-wave LDA �Ref. 49� and GGA �Ref. 42�
DFT, and tight-binding method.43,49 The calculated values of
the equilibrium translational length ts of the unit cell differ in
third decimal places both for the armchair and zigzag SWNT
of different radii. Evidently, two armchair or two zigzag
walls with slightly different lengths of the unit cell cannot be
commensurate. However, if such walls comprise a DWNT,
they can become commensurate after compression or expan-
sion due to interactions.

For DWNT, we derive the common equilibrium transla-
tional length td of the unit cell as

td =
ts
1�1 + ts

2�2

�1 + �2
, �3�

where ts
1, �1 and ts

2, �2 are translational length of the unit cell
and elastic constant of the inner and outer walls of DWNT.
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Translational length td corresponds to any region of com-
mensurate DWNT and to the commensurate region of
DWNT in the incommensurate phase. The possibility of the
commensurate-incommensurate phase transition in DWNT
was first predicted in Ref. 50. In the case of the incommen-
surate phase of DWNT near the phase transition, the walls of
DWNT have a periodic structure of alternating commensu-
rate regions and incommensurability defects. A recent high-
resolution transmission electron microscopy �HRTEM� study
of DWNT �Ref. 51� supports the theory of Ref. 50 and shows
that the walls of a nanotube can elastically deform to provide
short commensurate segments between the defects of atomic
structure �not incommensurability defects in this case�.

The effective thickness of DWNT is taken to be a sum of
the interwall distance d and the effective thickness w of
SWNT. Young’s modulus of DWNT is then calculated as

Ed =
��1 + �2�td

��w + d��R1 + R2�
, �4�

where R1 and R2 are radii of the inner and outer walls of a
DWNT.

The interwall distances d, translational lengths td of the
unit cell, the relative differences t�= �ts

2− ts
1� / td, and Young’s

moduli Ed of DWNT are presented in Table II. For the arm-
chair �n, n�@�n+5, n+5� and zigzag �9, 0�@�18, 0� DWNT,
the interwall distance is close to the interlayer separation in
graphite and the calculated values of the energy Uint are
comparable with the interwall interaction energy of
35–40 meV/atom obtained with the Lennard-Jones
potential16,18 and experimental value of the interlayer inter-
action in graphite.34

TABLE I. Structural characteristics and elastic properties of the walls of SWNT: R �in Å� is the radius of
the wall, ts �in Å� is the translational length of the unit cell, b1 and b2 �in Å� are two nonequivalent bond
lengths of the nonchiral walls, and Es �in TPa� is Young’s modulus.

Wall R ts b1 b2 Es Es

�4,4� 2.737 2.4498 1.4182±0.0001 1.4163±0.0001 1.038±0.001 0.97a

�5,5� 3.408 2.4434 1.4135±0.0001 1.4161±0.0001 1.030±0.006 0.95a,0.96b,1.06c

�6,6� 4.071 2.4424 1.4123±0.0001 1.4137±0.0001 1.093±0.003 0.98a,1.09d,1.22d

�7,7� 4.738 2.4423 1.4118±0.0002 1.4124±0.0001 1.099±0.002

�10,10� 6.748 2.4420 1.4105±0.0002 1.4103±0.0002 1.100±0.003 0.92a,0.98e,1.24d

�11,11� 7.421 2.4420 1.4108±0.0001 1.4100±0.0002 1.100±0.003

�12,12� 8.091 2.4419 1.4109±0.0001 1.4109±0.0001 1.098±0.004

�9,0� 3.532 4.2350 1.4173±0.0002 1.4080±0.0001 1.036±0.001 1.14c

�10,0� 3.916 4.2331 1.4149±0.0001 1.4087±0.0001 1.081±0.002 0.94b,1.05a,1.22d

�18,0� 7.011 4.2301 1.4113±0.0001 1.4091±0.0001 1.074±0.003

�20,0� 7.790 4.2293 1.4112±0.0001 1.4088±0.0001 1.088±0.002 1.26d

aReference 41.
bReference 42.
cReference 40.
dReference 49.
eReference 43.

TABLE II. Structural characteristics, elastic properties, and interwall interaction of DWNT: d �in Å� is the
interwall distance, td �in Å� and Ed �in TPa� are the translational length of the unit cell and Young’s modulus,
the parameter t� determines the difference in translational lengths of DWNT and constituent SWNT and is
described in the text, and Uint �in meV/atom� is the interwall interaction energy �per one atom of the outer
wall� of DWNT.

Nanotube d td t� Ed Uint

�4,4�@�10,10� 4.011 2.4444 0.00317 0.992±0.002 13.29

�5,5�@�11,11� 4.017 2.4424 0.00061 0.989±0.003 13.36

�6,6�@�12,12� 4.021 2.4421 0.00020 1.005±0.003 13.67

�5,5�@�10,10� 3.344 2.4425 0.00058 1.085±0.004 23.83

�6,6�@�11,11� 3.350 2.4421 0.00019 1.106±0.003 24.09

�7,7�@�12,12� 3.353 2.4421 0.00013 1.106±0.003 24.60

�9,0�@�18,0� 3.478 4.2315 0.00116 1.049±0.003 24.16

�10,0�@�20,0� 3.875 4.2305 0.00091 1.016±0.002 16.76
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The calculated Young’s moduli of SWNT and DWNT are
in good agreement with experimental measurements which
all give the value of the Young’s modulus in the neighbor-
hood of 1 TPa: the measurements of a force required to bend
�stretch� a nanotube give 1.28±0.59 TPa �Ref. 52� �0.27–
0.95 TPa �Ref. 53�� for MWNT and 1.2 TPa �Ref. 54� �0.32–
1.47 TPa �Ref. 55�� for SWNT, the analysis of thermal vi-
brations of cantilevered nanotubes gives 1.8±1.4 TPa for
MWNT �Ref. 56� and 0.4–1.3 TPa for ropes of SWNT �Ref.
57�.

The coordinates of the fully optimized equilibrium struc-
tures of the armchair �4,4�, �5,5�, �6,6�, �7,7�, �10,10�,
�11,11�, and �12,12� SWNT, �4,4�@�10,10�, �5,5�@�10,10�,
�5,5�@�11,11�, �6,6�@�11,11�, �6,6�@�12,12�, and
�7,7�@�12,12� DWNT, zigzag �9,0�, �10,0�, �18,0�, and
�20,0� SWNT, and �9,0�@�18,0� and �10,0�@�20,0� DWNT
can be obtained from the corresponding author.

III. Ab initio CHARACTERISTICS OF THE INTERWALL
INTERACTION

Potential relief of the interwall interaction energy U�� ,z�
depends on relative position of the walls. This can be de-
scribed by �, the angle of relative rotation of the walls about
the longitudinal axis of DWNT, and z, the relative displace-
ment of the walls along this axis. The symmetry of the inter-
wall interaction energy surface U�� ,z�, as well as relative
positions of the walls corresponding to extrema of the sur-
face, are uniquely determined by the symmetry of
DWNT.17,20 For the �n, n�@�m, m� armchair and �n, 0�@
�m, 0� zigzag DWNT, the Fourier expansion of interwall in-
teraction energy surface was given in Ref. 20 as

U��,z� = �
M,K�odd�=1

�

�K
Mcos�2�

td
Kz�cos�nm

N
M��sin2��nm

2N2 �
+ �

M,K�even�=0

�

	K
Mcos�2�

td
Kz�cos�nm

N
M�� , �5�

where N is the greatest common factor of n and m. There
exist two possibilities: namely, the odd case if both n /N and
m /N are odd and the even case if either n /N or m /N is even.
The even terms are always present in Eq. �5�, and the odd
terms only occur in the odd case.

According to the anticipated topological theorem,19 ex-
trema in the interaction energy surface correspond to the
relative position of the walls for which a DWNT has the
highest symmetry—i.e., when the second-order axes U2 of
the inner and outer walls are in line. The second-order U2
axis is perpendicular to the principal axis of the wall and
passes through the midpoint of the carbon bond or the center
of the hexagons. For the armchair �n, n�@�m, m� and zigzag
�n, 0�@�m, 0� DWNT, the elementary cell of the interwall
interaction energy surface U�� ,z� contains four different
types of critical points ��c, zc� �points for which the second-
order axes U2 of the inner and outer walls are in line�. If one
of the critical points is selected as the origin ��c ,zc�= �0,0�,
then the remaining three types of critical points can be de-
scribed as �td /4 ,0�, �0,�N /2nm�, and �td /4 ,�N /2nm�. The

elementary cell of the interwall interaction energy surface
contains one critical point of each type in the even case and
two critical points of each type in the odd case. All possible
relative positions of the inner and outer walls of a DWNT
with coincident U2 axes are listed in Table III.

The amplitude of harmonics in expansion �5� drops rap-
idly with an increase in M and K.15,17,19 The LDA-DFT
results21 on the interwall interaction energy surface U�� ,z�
for the �5,5�@�10,10� DWNT show that within the accuracy
of calculations �about 5% of the size of the energy barrier�,
the interaction energy can be interpolated using the first two
harmonics of expansion �5�:

U��,z� = U0 −
�U�

2
cos�2�

��

�� −
�Uz

2
cos�2�

�z
z� , �6�

where U0 is the average interwall interaction energy and
�U� and �Uz are the energy barriers to relative rotation and
sliding of the walls. Comparing expansions�5� and �6�, we
find that for the armchair �n, n�@�m, m� and zigzag �n, 0�@
�m, 0� DWNT, ��=�N /nm and �z= td /2. In the even case, ��

and �z are the periods of the relative rotation and sliding of
the walls between the equivalent positions. In the odd case,
such periods are determined by the
�1

1cos�2�z / td�cos�nm� /N� harmonic and are equal to 2��

and 2�z, respectively. Semiclassical results18 with the use of
the Lennard-Jones potential confirm that for all considered
armchair �n, n�@�n+5, n+5� DWNT with n=5–15 and zig-
zag �n, 0�@�n�9, 0� DWNT with n=9–18, the interwall
interaction energy can be successfully interpolated using ex-
pansion �6� within an accuracy of about 1% of the size of the
energy barrier. This shows that the interwall interaction en-
ergy surface of DWNT with nonchiral commensurate walls
is defined by the first two harmonics in expansion �6�. In this
case, the four types of the critical points on the surface are
the global minimum, global maximum, and two saddle
points.

The values of interwall interaction energies calculated in
these four critical points fully determine the energetics and
energy barriers of DWNT. The interaction energies which
correspond to the minimum of the interwall interaction en-
ergy surface are shown in Table II. The energy barriers �Um�

and �Umz to the relative rotation and sliding of the walls in
DWNT when passing through the minimum of the interwall
interaction energy surface are presented in Table IV �only the
barriers which exceed the accuracy of calculations, 10−5 a.u.,
are included�. These values correspond to the energies per
carbon atom of the movable outer wall. The size of basis set
has a significant effect on the calculated energies and barri-
ers. In Ref. 21, the interwall interaction energy surface, as a
function of the relative rotation and sliding of the walls, has
been calculated for the �5,5�@�10,10� DWNT with a smaller
basis set, pdpp, in the AIMPRO notation. These calculations
overestimate the energy barriers, giving the following values:
�Um�=0.516 meV/atom and �Umz=0.249 meV/atom.

Extremely small barriers to the relative rotation of the
walls of DWNT with incompatible rotational symmetries al-
low us to predict the possibility of the orientational melting
in such DWNT—i.e., the rotation of the walls caused by an
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increase of temperature. Further interesting conclusions can
be extracted from the results presented in Table IV on the
energy barriers.

�1� Barriers to the relative rotation of the walls in excess
of the accuracy of calculations can only be found for the
DWNT with a compatible rotational symmetry of the walls.

�2� For the armchair �n, n�@�n+5, n+5� and �n, n�@�n
+6, n+6� DWNT, the barrier to the relative sliding of the
walls per carbon atom increases as the radius of the DWNT
grows.

�3� For the zigzag �9,0�@�18,0� DWNT, the barrier to the
relative sliding of the walls is an order of magnitude higher
than for the armchair �5,5�@�10,10� DWNT. Note that the

radii and interwall distances are very close in value for these
DWNT.

Related results were reported using semiempirical inter-
atomic potentials of Kolmogorov and Crespi14 and
Lennard-Jones.18 Thus, quantitatively accurate ab initio re-
sults confirm the qualitative conclusions obtained with the
use of semiempirical potentials.

For the armchair �5,5�@�10,10� and zigzag �9,0�@�18,0�,
�10,0�@�20,0� DWNT, we find a discrepancy between the
values of barriers to the relative sliding of the walls calcu-
lated for the relative positions of the walls at �=0 and �
=�N /2nm. The contribution from the higher harmonic
	2

2cos�4�z / td�cos�2nm� /N� may be responsible for this dis-

TABLE III. Relative positions of nonchiral commensurate walls of DWNT with coincident symmetry
axes U2. 
 and Z define the relative position of the walls in fractions of a period of the interwall interaction
energy surface. If both n /N and m /N are odd �N is greatest common divisor of n and m�, the translational
period of the interwall interaction energy surface equals the length a of the unit cell of DWNT and the
rotational period is T=2�N /mn. In the even case, these periods are a /2 and T /2. Symmetry axes U2 which
pass through the center of hexagons are denoted as C1 �the inner wall� and C2 �the outer wall�, through the
midpoint of the carbon bonds parallel to the principal axis �for zigzag walls� and perpendicular to the
principal axis �for armchair walls� as H1 and H2, and through the midpoint of the oblique carbon bonds as O1
and O2.


, Z
Even n /N, odd m /N Odd n /N, even m /N Odd n /N, odd m /N

�,z Coincident axes U2 �,z Coincident axes U2 �,z Coincident axes U2

0,0 0,0 �H1,H2�,�C1,C2�, 0,0 �H1,H2�,�C1,C2�, 0,0 �H1,H2�,�C1,C2�,
�H1,C2�,�C1,H2� �H1,C2�,�C1,H2� �O1,O2�

0,1 /2 0,a /4 �H1,O2�,�C1,O2� 0,a /4 �O1,H2�,�O1,C2� 0,a /2 �H1,O2�,�C1,O2�
�O1,O2�

1/2,0 T /4,0 �O1,O2� T /4,0 �O1,O2� T /2,0 �H1,O2�,�C1,O2�,
�O1,O2�

1/2,1 /2 T /4,a /4 �O1,H2�,�O1,C2� T /4,a /4 �H1,O2�,�C1,O2� T /2,a /2 �H1,H2�,�C1,C2�,
�O1,O2�

1/4,1 /4 T /4,a /4 �H1,O2�,�C1,O2�,
3 /4,1 /4 3T /4,a /4 �O1,H2�,�O1,C2�
1/4,3 /4 T /4,3a /4

3 /4,3 /4 3T /4,3a /4

TABLE IV. Characteristics of rigid motion of the walls in DWNT’s. �Umz �in meV/atom�, �Um� �in
meV/atom�, and Fz �in nN� and F� �in nN� are the energy barriers �per one atom of movable outer wall� and
threshold forces for sliding and rotation of the walls; lmax �in nm� is the maximum overlap of the walls for
which threshold forces are greater than capillary forces. Threshold forces Fz and F� are calculated for the
overlap of the walls l=100 nm.

Nanotube �Umz �Um� Fz F� lmax

�4,4�@�10,10� 0.018±0.007 �0.007 1.20±0.5 28.4±12.4

�5,5�@�11,11� 0.025±0.006 �0.006 1.80±0.5 21.0±5.3

�6,6�@�12,12� 0.031±0.006 0.010±0.006 2.50±0.5 0.9±0.5 17.2±3.2

�5,5�@�10,10� 0.143±0.007 0.407±0.007 9.70±0.5 32.6±0.5 6.43±0.3

�6,6�@�11,11� 0.178±0.006 �0.006 13.20±0.5 5.25±0.18

�7,7�@�12,12� 0.220±0.006 �0.006 17.80±0.5 4.24±0.1

�9,0�@�18,0� 1.760±0.004 0.029±0.004 71.24±0.15 4.0±0.5 0.9

�10,0�@�20,0� 0.543±0.004 0.028±0.004 24.44±0.15 4.3±0.5 2.08±0.02
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crepancy. However, the revealed discrepancy is fairly small
and comprises about 7.8% of the barrier to the relative slid-
ing for the �5,5�@�10,10� DWNT, 1.4% for the �9,0�@�18,0�
DWNT, and 6.9% for the �10,0�@�20,0� DWNT. As a result,
we use expansion �6� to estimating the characteristics of the
relative sliding of the walls for all considered DWNT. For
the armchair �5,5�@�10,10� and �6,6�@�12,12� DWNT, the
discrepancy between the values of the barriers to relative
rotation of the walls calculated for the relative positions of
the walls at z=0 and z= td /4 is negligible. In this case, ex-
pansion �6� is also used to estimate the characteristics of the
relative rotation of the walls.

We next study the interaction of nonchiral commensurate
walls in DWNT which corresponds to the odd case when
both n /N and m /N are odd �the �5,5�@�11,11� DWNT�. Our
estimates reveal that in this case, amplitude of the
�1

1cos�2�z / td�cos�nm� /N� harmonic which determines the
periods of the interwall interaction energy surface is small
due to incompatibility of rotational symmetries of the walls,
and only the 	2

0cos�4�z / td� harmonic with half a period has
an amplitude which exceeds the accuracy of calculations.
The same harmonics have a maximum amplitude for another
members of the �n, n�@�n+6, n+6� family; these are the
�4,4�@�10,10� or �6,6�@�12,12� DWNT. Therefore, we can
conclude that the difference between the interwall interaction
energy surfaces corresponding to the odd and even cases is
insignificant.

For DWNT with compatible rotational symmetries of the
walls, the relative positions of the walls which correspond to
the minima of the interwall interaction energy surface can be
identified using Table III. These are defined by �� ,z�
= �0,0� for the �5,5�@�10,10� and �6,6�@�12,12� DWNT and
by �� ,z�= �T /4 ,a /4� for the �9,0�@�18,0� and �10,0�@�20,0�
DWNT, where T and a are rotational and translational peri-
ods of the interwall interaction energy surface. The positions
of the minima of the interwall interaction energy surface of
the �9,0�@�18,0� DWNT are shifted in sliding displacement
by half a period in comparison to the results obtained using
the Lennard-Jones potential.19

IV. THRESHOLD FORCES AND CAPILLARY FORCES
DETERMINING THE RELATIVE MOTION OF

THE WALLS IN DWNT’S

We use expansion �6� of the interwall interaction energy
surface to estimate the threshold forces Fz and F� for the
relative sliding and rotation of the walls of DWNT. The
threshold forces are expressed as

Fz =
��UmzNml

�ztd
, F� =

��Um�Nml

��Rmtd
, �7�

where Nm is a number of atoms in the unit cell of the mov-
able wall, Rm is the radius of the movable wall, and l is the
overlap of the walls. Estimations of the threshold forces have
been done for the overlap of the walls, l=100 nm, which
corresponds to the experimental conditions,2 and the results
are presented in Table IV. It can be seen from Table IV that
the threshold forces Fz and F� for the relative sliding and

rotation of the walls in nonchiral DWNT lie within the range
of forces obtained by atomic force microscopy.58 This en-
ables the controlled relative motion of the walls of carbon
nanotubes to be used in mechanical nanodevices. As shown
by Eqs. �7�, these forces are proportional to the barriers to
relative motion of the walls. For the �5,5�@�10,10� DWNT,
ab initio values of the threshold forces are several times
larger than the semiempirical results of Ref. 18; however,
they agree well with the experimentally observed forces.53

Here, we consider only the case when the barriers are tra-
versed in an adiabatic manner without a local expansion or
contraction of walls, and we neglect the contribution from
the edges of the walls into the barrier; i.e., we assume that
this contribution is small for a sufficiently large overlap l.

Experimental study of relative motion of the walls in
MWNT �Ref. 2� shows that the inner core, telescopically
pulled out from the outer-shell structure of the MWNT, can
be completely pushed back into the outer shell by capillary
forces restoring the MWNT to its original condition. Such a
telescopic process of extending and retracting the core can
only take place if the capillary force Fcap is greater than the
threshold force Fz. The capillary force Fcap does not depend
on the overlap l of the walls and can be derived as

Fcap =
dU

dl
=

UintNm

td
, �8�

whereas the threshold force Fz given by Eqs. �7� is propor-
tional to this overlap. The maximum overlap lmax of the walls
for which the threshold forces do not hinder the retraction of
the core can be determined from the balance of the forces
Fcap=Fz:

lmax =
�zUint

��Umz
. �9�

Estimations of the maximum overlap lmax are given in
Table IV. It can be seen that within the same family of
DWNT, �n, n�@�n+5, n+5� or �n, n�@�n+6, n+6�, the
maximum overlap lmax goes down with an increase of the
radius of the wall. Results tabulated in Table IV also suggest
that if the outer wall of the telescopically pulled-out core and
the inner wall of the remaining outer-shell structure of the
MWNT comprise a nonchiral commensurate pair, the core
cannot be pushed back by the capillary forces and the experi-
ment of Cumings and Zettl2 cannot be successfully per-
formed for this pair of neighboring walls.

Other possible pairs of neighboring walls are chiral com-
mensurate and incommensurate walls. The maximum over-
lap lmax is next estimated for the �8,2�@�16,4� DWNT with
chiral commensurate walls. The interwall interaction energy
and barrier to the relative sliding of the walls have been
computed for this DWNT in Ref. 21 and the reported esti-
mates are Uint=17.5 meV/atom and �Umz is less than
0.001 meV/atom �per atom of the outer wall�. Using method
described elsewhere,15 the period of the relative sliding of
the walls can be readily calculated as �z=0.46 Å. Finally,
using Eq. �9� the maximum overlap lmax of the inner and
outer walls of the �8,2�@�16,4� DWNT for which the con-
trolled reversible telescoping can be achieved is estimated to
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be greater than 250 nm. This is the lowest estimate of the
lmax, and in principle this value can be orders of magnitude
greater. In the case of incommensurate walls, the barrier to
relative sliding does not increase with the length of the over-
lap, but fluctuates near some average value.5,6,14,15 As a re-
sult, the threshold force Fz also does not increase with the
length of the overlap and therefore does not prevent retrac-
tion of the incommensurate inner wall by capillary forces.

Thus, the experiment of Cumings and Zettl cannot be suc-
cessfully performed only for a pair of nonchiral commensu-
rate walls and the effect of reversible telescopic extension of
MWNT can be used for selecting pairs of nonchiral com-
mensurate walls. A range of uses has been suggested for the
relative motion of nonchiral commensurate walls in electro-
mechanical nanodevices. The relative rotation of such walls
has potential applications in nanobearings18 and their relative
sliding can be used in devices operating in the accelerating
mode.5,6,9

V. CONCLUSIVE REMARKS

In this paper, we apply the DFT approach to calculate the
structural characteristics and elastic properties of armchair
and zigzag SWNT which are used to construct a set of
DWNT with two armchair or two zigzag walls. We study the

interwall interaction and relative motion of the walls of
DWNT and calculate the barriers to the relative rotation and
sliding of the walls. We show that the first two harmonics of
the Fourier expansion of the interwall interaction energy de-
fine the shape of the energy surface.

The extremely small barrier to the relative rotation of the
nonchiral commensurate walls of DWNT with incompatible
rotational symmetries indicates that orientational melting can
occur in such DWNT.

Ab initio values of the barriers are used to estimate ex-
perimentally measurable quantities. First, we calculate the
threshold forces required to initiate the relative sliding of the
walls along the axis of a DWNT. This has also led to our
attempt to identify the walls in the experiment2 on the revers-
ible telescoping of the walls of MWNT by capillary forces.
Our calculations show that such an experiment cannot be
successfully carried out for nonchiral commensurate walls of
a MWNT. We propose to use the effect of controlled and
reversible telescopic extension of MWNT for selecting pairs
of nonchiral commensurate walls.
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