
Modeling of an ultrahigh-frequency resonator based on the relative vibrations of carbon
nanotubes

Elena Bichoutskaia,1,* Andrei M. Popov,2 Yurij E. Lozovik,2 Olga V. Ershova,3 Irina V. Lebedeva,3,4,5 and
Andrei A. Knizhnik4,5

1Department of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
2Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, 142190 Moscow Region, Russia

3Moscow Institute of Physics and Technology, Dolgoprudny, 141700 Moscow Region, Russia
4RRC “Kurchatov Institute,” Kurchatov Sq. 1, 123182 Moscow, Russia

5Kinech Laboratory Ltd., Kurchatov Sq. 1, 123182 Moscow, Russia
�Received 23 June 2009; revised manuscript received 22 September 2009; published 27 October 2009�

An ultrahigh frequency resonator based on the relative vibrations of the walls of carbon nanotubes is
proposed and studied theoretically. Density functional theory is used to compute the energy of interaction of
the walls as a function of their relative rotation and displacement along the principal axis of nanotube. The
computed energy curves are fitted analytically and further exploited in the calculations of the frequencies of
small relative axial and rotational vibrations of the walls. For a model resonator based on the �9,0�@�18,0�
double-walled carbon nanotube with the movable outer wall, the microcanonical molecular dynamics simula-
tions are performed to predict the quality factor of the resonance. Possible applications of the resonator are
suggested, which include nanoscale mass detection. The estimated mass sensitivity of the proposed system
reaches the atomic-mass limit at liquid-helium temperature.
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I. INTRODUCTION

Active research in advanced functional materials is
largely driven by a search of new concepts of nanodevices
with potential technological and medical applications. Nano-
electromechanical systems �NEMS� have a particular prom-
ise to radically change fundamental measurements at the
molecular scale. Mechanical nanoresonators with the mass
in the range of hundreds of femtograms and the opera-
tional frequencies in the region of 100 MHz to 1 GHz have
been fabricated.1–7 Due to small effective mass of their vi-
brating parts and small moment of inertia, nanoresonators
can serve as very sensitive mass detectors capable of reso-
lution in the range of 10−18–10−21 g.6–9 They have been used
to weigh single bacteria8 and detect single spins in magnetic-
resonance systems enabling a wide variety of quantum-
measurement experiments.10

Typically, nanoscale resonators are made from silicon.
However, carbon nanotubes �CNTs� provide an alternative
building material due to their unique atomic structure, high
Young’s modulus and low density. A significant progress has
been made in constructing resonators based on the transverse
vibrations of CNTs, which allow achieving the resonance
frequency of 1.4 GHz.6 If even higher resonance frequencies
in CNTs were achieved, it would allow investigating the
problems of fundamental interest such as the mechanisms of
energy dissipation during ultrahigh frequency vibrations, as
well as to continue the search for suitable CNTs-based mass
sensors. However, realization of ultrahigh frequency resona-
tors represents a significant experimental challenge. In can-
tilever CNTs, to reach the frequencies exceeding 2 GHz
would require the use of impractically short nanotubes, less
than 10 nm in length. In this paper, it is shown that the
resonant frequencies of the relative vibrations of the walls of
CNTs could potentially reach hundreds of GHz and critically

they do not depend on the size of the resonator. The latter
would be a major advantage over the existing systems de-
scribed in Refs. 1–9.

Two types of mechanical motion largely used in nanome-
chanical resonators are flexural and torsional vibrations.
Flexural resonators are typically designed as cantilevers �Fig.
1�a�� or doubly clamped beams, and an example of torsional
oscillator is a paddle �Fig. 1�b��. A schematic of a resonator
utilizing relative vibrations of the walls of carbon nanotubes
is shown in Fig. 1�c�. Motional freedom of the walls of CNTs
has been exploited in a variety of NEMS designs11–17 includ-
ing important advances in building rotational and sliding
electromechanical nanomotors18–20 and memory cells.21

Modeling the operational characteristics of these devices re-
quires not only understanding of the nature of the interaction
between the walls in CNTs but crucially its quantitative de-
scription. Both the position and the relative oscillations of
the walls in double-walled carbon nanotubes �DWNTs� can
be defined precisely if the interwall interaction energy is
known. Furthermore, the values for the barriers to the rela-
tive motion of the walls can be extracted from the interwall
interaction energy surface. Thus quantifying the interwall in-
teraction is the next important stage in the development of
NEMS based on DWNTs. In this paper, the interwall inter-

FIG. 1. Examples of nanoresonators based on mechanical vibra-
tions: �a� a cantilever utilizing flexural vibrations �Ref. 5�, �b� a
paddle utilizing torsional vibrations �Ref. 75�, �c� a resonator utiliz-
ing the relative vibrations of the walls of carbon nanotubes �this
paper�.
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action energy as a function of the relative displacement and
rotation of the walls is computed using density functional
theory �DFT�, fitted analytically and subsequently exploited
in the calculations of the frequencies of the relative vibration
of the walls. This provides a rigorous computational test for
the quality of the obtained interwall interaction energy sur-
faces.

The paper is organized as follows. In Sec. II, small rela-
tive axial and rotational vibrations of the walls of CNTs are
investigated theoretically. Section III presents the results of
the microcanonical molecular dynamics �MD� simulations
for the quality factor of an ultrahigh frequency nanoresonator
based on the relative vibrations of DWNTs. Section IV is
devoted to the discussion of possible applications for the
proposed resonator with particular emphasis on mass detec-
tion. The conclusions are summarized in Sec. V.

II. INTERACTION AND VIBRATIONAL FREQUENCIES
OF THE WALLS OF CARBON NANOTUBES

The relative vibrations of the walls of CNTs cause corru-
gations in the interwall interaction energy surface, which are
orders of magnitude less than the average value of the inter-
wall interaction energy. These corrugations are defined not
only by the length of the interacting walls and the distance
between the walls but also by their symmetry.22,23 The inter-
wall interaction in DWNTs has been studied extensively us-
ing a variety of computational methods.23–32 For DWNTs
with the interwall separation in the range of 3.4–3.7 Å, both
DFT �Ref. 28� and tight-binding technique29 calculations
show that the radial displacements of the walls from coaxial
position lead to significant increase in the interwall interac-
tion energy. Therefore, the relative axial and rotational vibra-
tions of the walls are not accompanied by the radial displace-
ments, and the frequencies of these vibrations can be
calculated using the dependence of the interwall interaction
energy on the angle of the relative rotation of the walls, �,
and their relative displacement, z. Subsequently, the values
for the barriers to the relative motion of the walls can be
extracted from the U�� ,z� surface.

According to semiempirical calculations,25,32 for the
�n1 ,n1�@ �n2 ,n2� armchair and the �n1 ,0�@ �n2 ,0� zigzag
DWNTs the interwall interaction energy can be interpolated
using the first harmonics of the Fourier expansion

U��,z� = U0 − U��� − U�z�

= U0 −
�U�

2
cos�2�

��

�� −
�Uz

2
cos�2�

�z
z� , �1�

where U0 is the average interwall interaction energy, �U�

and �Uz are the energy barriers to the relative rotation and
sliding of the walls. In this paper, only the case of commen-
surate walls is considered for which U0, �U�, and �Uz are
proportional to the length of the overlap between the walls.
Periods of the rotation and sliding between the equivalent
positions are defined as ��= �N

n1n2
and �z=

lc

2 , where N is the
greatest common factor of integers n1 and n2, and lc is the
length of the unit cell of DWNT. For DWNTs with compat-
ible rotational symmetry of the walls �N=n1�, the energy

barrier to the relative rotation, �U�, can be significant. For
DWNTs with incompatible rotational symmetry of the walls
�N=1�, both ab initio24 and semiempirical25 results show that
the dependence of the interwall interaction energy on the
angle � is typically very small so that the second term in
expansion �1� can be neglected.

To test the adequacy of expansion �1� with density func-
tional theory, the DFT AIMPRO code33 with Perdew-Wang
exchange-correlation functional34 has been used. Integration
over the Brillouin zone is approximated using the
Monkhorst-Pack method35 with 18 k-points sampling for
DWNTs with armchair walls and 15 k-points sampling for
DWNTs with zigzag walls. Basis set for carbon atom com-
prises the nonlocal norm-conserving core pseudopotential36

extended with 38 Gaussian-type valence basis functions op-
timized for graphite structure. This approach predicts the in-
terlayer binding energy in graphite of 35 meV/atom,37 which
is in good agreement with the experimental value.38 Addi-
tionally, it reproduces the properties highly sensitive to the
interlayer interaction, such as elastic and electronic proper-
ties of graphite. For example, the local density approxima-
tion �LDA� DFT C44 elastic constant for basal shear is com-
puted to be 4.20 GPa,37 whereas experiment39 gives
5.05�0.35 GPa.

The interwall interaction energies and the binding be-
tween the walls in carbon nanotubes, both nested and in
bundles, have been previously studied using DFT,24,26,28 and
most recently including dispersion corrections.40 However,
these calculations did not clarify the importance of the dis-
persion interactions in the evaluation of the barriers to the
rotation and sliding of the walls of carbon nanotubes with
respect to one another. A recent study of the interaction of
polycyclic aromatic hydrocarbons �PAHs� with graphene41

showed that the dispersion interactions, although being most
important contribution to the binding of these weakly bound
systems, do not change the shape of the interaction energy
surfaces or the value of the barriers to the motion of PAHs on
graphene. These results underpin modeling using DFT of
electromechanical devices based on the relative vibrations of
graphene layers and telescoping carbon nanotubes.

The interwall interaction energies of the armchair
�6,6�@�11,11� and the zigzag �9,0�@�18,0� DWNTs have
been computed at a fixed angle � and for five different val-
ues of the wall displacement z, including critical points of the
surface such as global extrema and saddle points. The calcu-
lated DFT values and interpolation curves presented in Fig. 2
confirm that the interwall interaction energy of DWNTs can
be satisfactorily interpolated using only first harmonics of
the Fourier expansion �1�. The average interwall interaction
energy and the barriers to the relative motion of the walls are
normalized per atom of the outer wall.

With the exception of Ref. 29 where the modes of rota-
tional vibrations of a �5,5�@�10,10� DWNT were calculated,
only the frequencies of the modes originating from vibra-
tions of individual walls of DWNTs have been so far re-
ported in the literature.42–45 To calculate the frequencies of
the relative vibrations of the walls, the second and third
terms in expansion �1� of the interwall interaction energy
surface are interpolated near the minimum using the har-
monic potential as follows:
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U�z� =
1
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kzz

2, U��� =
1

2
k��2 �2�

where

kz =
8n2lov�Uz

lc
�2�

lc
�2

, k� =
8n2lov�U�

lc
�n1n2

N
�2

. �3�

The frequencies �z and �� of the axial and rotational vibra-
tions of the walls can be determined as

�z =
1

2�
� kz

M
, �� =

1

2�
�k�

J
, �4�

where M is the reduced mass and J is the reduced moment of
inertia of the two walls.

If only the inner wall of DWNT, denoted as 1, is moving
its moment of inertia and the mass can be expressed as

J1 = M1R1
2, M1 =

4n1mCl1

lc
, �5�

where mC is the mass of carbon atom. Similarly, if only the
outer wall 2 is moving then

J2 = M2R2
2, M2 =

4n2mCl2

lc
. �6�

Finally, the reduced moment of inertia and the reduced mass
of both moving walls are defined as

J12 =
J1J2

J1 + J2
, M12 =

M1M2

M1 + M2
. �7�

In the latter case, the reduced mass and the reduced moment
of inertia imply that DWNT is not fixed between the elec-
trodes but floating without friction. Although DWNTs with
both walls moving cannot be realized in the laboratory con-
ditions, it is not at all impossible as fullerenes and multi-
shelled carbon nanoparticles were observed in the interstellar
medium.46 Thus, a possibility of the presence of CNTs in the
interstellar medium or future studies of CNTs in a space
laboratory should not be neglected.

The frequencies of the axial and rotational vibrations do
not depend on the length of DWNT if both walls have the
same length or if the longer wall is fixed and not moving. In

such cases, the length of the overlap between the walls is
equal to the length of vibrating walls, i.e., lov= l1 or �and�
lov= l2. Inserting expressions �3� for kz and k�, into Eq. �4�
together with the relevant expressions for M and J given
above, the frequencies of the relative vibrations of the walls
can be defined as follows:

�z,1 =
1

lc

�2n2�Uz

n1mC
, �z,2 =

1

lc

�2�Uz

mC
,

�z,12 =
1

lc

�2�n1 + n2��Uz

n1mC
, �8�

where �z,1 and �z,2 are the frequencies of the axial sliding
vibrations of the inner and outer wall, correspondingly, and
�z,12 is the frequency of the relative axial sliding vibrations
of the walls. Similarly, the frequencies ��,1, ��,2, and ��,12 of
the rotational vibrations of the walls are given by the follow-
ing expressions:

��,1 =
n2

�NR1
�n1n2�U�

2mC
, ��,2 =

n1n2

�NR2
��U�

2mC
,

��,12 =
n2

�NR1R2

�n1�n1R1
2 + n2R2

2��U�

2mC
. �9�

The frequencies of the axial sliding vibrations of the walls
calculated for a set of DWNTs using expressions �8� are
presented in Table I. It is interesting to note that the change
in the frequencies is determined by the interplay between the
change in the energy barrier to the relative sliding of the
walls and the mass of the walls. For example, �z,1 should go
up with the increase in the energy barrier and the decrease in
the mass of the inner wall 1. The DFT values for the energy
barriers to the relative motion the walls are taken from
Ref. 24 where it was shown that for the armchair
�n ,n�@ �n+5,n+5� and �n ,n�@ �n+6,n+6� DWNTs the
barrier to the relative sliding of the walls increases with the
increase in the radius �and, hence, the mass� of nanotube.
Table I shows that in this case, for a given outer wall, the
frequency of the axial vibrations of the inner wall signifi-
cantly increases even with the increase in the mass of the
inner wall thus leading to the conclusion that the change in

FIG. 2. The interwall interaction energy �in meV per atom of the
outer wall� as a function of the wall displacement. �a�: the
�6,6�@�11,11� DWNT and �b�: the �9,0�@�18,0� DWNT. The dis-
placement z has the dimensionality of a fraction of a period of the
relative sliding of the walls ��z�. Circles show the calculated values
of the energy and the solid line is interpolation of the energy using
expansion �1�. The energy minimum is positioned at U=0 and z
=0.

TABLE I. The frequencies �in GHz� of vibrations of the walls of
DWNTs: vz,1 are vz,2 the frequencies of vibrations of the inner and
outer wall, correspondingly, and vz,12 is the frequency of the relative
axial vibrations of both walls.

DWNT vz,1 vz,2 vz,12

�4,4�@�10,10� 108�22 68�14 128�26

�5,5�@�11,11� 121�15 81�10 146�18

�6,6�@�12,12� 129�13 91�9 158�15

�5,5�@�10,10� 277�7 196�5 340�8

�6,6�@�11,11� 304�8 224�6 380�10

�7,7�@�12,12� 319�4 243�3 401�5

�9,0�@�18,0� 577�1 397.4�0.5 701�1

�10,0�@�20,0� 312�1 221�1 382�1
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the value of the energy barrier is the dominant effect. Al-
though the values of the radii and interwall distances are
very close in the armchair �5,5�@�10,10� DWNT and the
zigzag �9,0�@�18,0� DWNT, the barrier to the relative slid-
ing of the walls is an order of magnitude higher in the
�9,0�@�18,0� DWNT.24 This fact is reflected in the high val-
ues of the frequencies of vibrations of the walls of the
�9,0�@�18,0� DWNT. For the �5,5�@�10,10� DWNT,
frequencies of the rotational vibrations of the walls have
been also estimated and the values are ��,1=530 GHz,
��,2=190 GHz, and ��,12=570 GHz �the DFT values of the
radii R1 and R2 are taken from Ref. 24�. These values are
smaller by a factor of 2 than the frequencies of the rotational
vibrations calculated in Ref. 29. The discrepancy in the re-
sults is due to the fact that for the �5,5�@�10,10� DWNT the
tight-binding method predicts greater value for the barrier to
the relative rotation of the walls. The frequencies of the ro-
tational vibrations of the walls of the �5,5�@�10,10� DWNT
calculated in this paper are in a good agreement with the
frequencies of the rotational vibrations in a bundle of �10,10�
CNTs �Ref. 47� lying in the region of 300–360 GHz. For the
�6,6�@�12,12�, �9,0�@�18,0�, and �10,0�@�20,0� DWNTs,
the frequencies of the relative rotational vibrations are esti-
mated to be in the range of 30–300 GHz. Note that these
frequencies exceed by 2 orders of magnitude the currently
achieved record of 1.4 GHz �Ref. 6� of the resonant frequen-
cies in nanoresonators.

Equations �9� require data on the chirality indices and
radii of the constituent walls. If the chirality indices were
known, the radius of the wall could be estimated using ap-
proximate expression R=a0�n /2�, where a0 is the carbon-
carbon bond length in graphite, �=�3 for the armchair �n ,n�
walls, and �=1 for the �n ,0� zigzag walls. If the expression
above is substituted into Eqs. �9�, the frequencies of the ro-
tational vibrations of the walls take the following form:

��,1 =
n2

N�a0
�2n2�U�

n1mC
, ��,2 =

n1

N�a0
�2�U�

mC
,

��,12 =
1

N�a0

�2�n1
3 + n2

3��U�

n1mC
. �10�

According to Ref. 48, vibrations of the walls of DWNTs
along the principal axis are infrared active, whereas the ro-
tational vibrations are Raman active. The calculated frequen-
cies can be therefore measured using appropriate techniques
of terahertz and Raman spectroscopy. In such measurements,
the calculated frequencies should be distinguishable from the
frequencies of the vibration modes of individual walls. Elec-
tron diffraction method has been suggested recently,49 which
allows examining the chirality indices of both the outer and
the inner walls of an isolated DWNT. This method could be
used to select DWNTs for experimental realization of the
ultrahigh frequency resonator described in the next section
and to study the relative motion of the walls of DWNTs.

III. ULTRAHIGH FREQUENCY RESONATOR:
MOLECULAR DYNAMICS SIMULATIONS

The proposed ultrahigh frequency resonator comprises a
DWNT with the long inner wall attached to the source and

the drain electrodes, and the short outer wall �shuttle� that
can move along the inner wall between the source and the
drain electrodes and/or about the nanotube axis. In principle,
the resonator could be built from multiwalled carbon nano-
tubes, analogous to the design of recently realized nanotube-
based motors.18–20 The vibrations of the walls are excited by
applying an alternating voltage between the source and the
drain electrode at the frequency of resonance.

To estimate the quality factor of the resonance in the pro-
posed system, the MD simulations of the resonator based on
a �9,0�@�18,0� DWNT with the movable outer wall have
been performed �see detailed methodology in Refs. 50 and
51�. Van der Waals interaction between carbon atoms of the
inner and the outer walls is described using the Lennard-
Jones 12–6 potential U=4	��
 /r�12− �
 /r�6� with param-
eters 	=3.73 meV and 
=0.34 nm taken from the AMBER

database.52 The cut-off distance of the Lennard-Jones poten-
tial is taken to be 2 nm. The covalent carbon-carbon interac-
tions are described using the empirical Brenner potential,53

which was shown to correctly reproduce vibrational spectra
of both defected and defect-free carbon nanotubes.54

Periodic boundary conditions are applied along the prin-
cipal axis of the DWNT. The length of the outer �18,0� wall
is taken to be 2 nm, and the length of the simulation cell is
6.3 nm, sufficient to exclude the interactions between the
shuttles in the neighboring cells. Small free oscillations of
the outer wall along the principal axis of the DWNT are
allowed with the initial amplitude of 0.58 Å. Ten simula-
tions with different initial distributions of velocities of the
atoms are performed at liquid-nitrogen temperature of 77 K
and seven simulations are performed at liquid-helium tem-
perature of 4.2 K. The duration of each simulation is between
100 and 130 ps. The time steps used are 0.1 and 0.3 fs at the
temperature values of 4.2 and 77 K, respectively. In the latter
case, the time step is two orders of magnitude smaller than
the period of the thermal vibrations of carbon atoms. Typical
examples of the dependence of the wall displacement on
time presented in Fig. 3 show the damped oscillations of the
outer wall. The average values of the Q factors obtained are
Q=160�80 at 77 K and Q=540�240 at 4.2 K.

Since the energy loss per oscillation period and the ther-
mal kinetic energy per degree of freedom are of the same
order of magnitude, considerable thermodynamic fluctua-
tions of the Q factor have been observed in the proposed
model system. Furthermore, the Q factor averaged over one
simulation is sensitive to the initial distribution of coordi-
nates and velocities of carbon atoms. This explains a large

FIG. 3. The displacement �in Å� of the outer wall of the
�9,0�@�18,0� DWNT as a function of time �in ps� at �a� T=4.2 K
and �b� T=77 K.
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calculation error of the Q factor. The thermodynamic fluc-
tuations can also impose restrictions on the minimum size of
NEMS. This problem has been studied in Ref. 51 for a
DWNT based gigahertz oscillator using MD simulations and
theoretical analysis in the framework of the fluctuation-
dissipation theorem. The computed values of the Q factors
are in good general agreement with those typical for DWNT
based NEMS. The Q factor values of the DWNT-based os-
cillators with large telescopic oscillations of the walls were
first calculated in Ref. 51 as well as estimated from the data
previously obtained in MD simulations,55,56 and the Q values
of 300–800 were predicted at very low temperatures of 0–8
K. These estimates also showed significant increase in the
values of Q factor with the decrease in temperature. In can-
tilever resonators based on multiwalled nanotubes and ropes
of CNTs, measurements yielded the Q values in the range of
150–2500 at room temperature.10,57–62

Typically, the dissipation mechanisms and the overall be-
havior of the loss in nanoresonators based on CNTs are very
complicated and no single mechanism is dominant. The en-
ergy losses can be divided into two general categories: the
intrinsic and extrinsic losses. The intrinsic losses, such as
phonon-phonon and phonon-electron interactions, are funda-
mental “internal friction” processes within the lattice and can
arise even in a perfect crystal. These dissipation mechanisms
set the absolute limit to the performance of a mechanical
resonator. Additional dissipation arises from imperfections of
the lattice, such as defects, impurities, and dangling bonds.
The extrinsic losses occur due to interactions with the sur-
rounding media such as air friction, clamping, and measure-
ment scheme. All the above losses will affect the perfor-
mance and lower the Q factor of any nanoresonator based on
CNTs.

To achieve greater Q factors in a resonator based on the
relative vibrations of the walls of CNTs, the resonance be-
tween the frequencies of the modes originating from the vi-
brational modes of the individual walls and the frequencies
of their relative axial or rotational vibrations should be
avoided. For considered DWNTs with diameters less than 1.5
nm, the lowest frequency modes are the squeezing-like mode
lying between 0.9 and 1.2 THz,43 and the longitudinal and
twisting modes, which occupy the region between 1.05 and
1.5 THz.45 Therefore, the resonances are absent for resona-
tors based on DWNTs with small diameters. The
semiempirical25 calculations show that the barrier to the rela-
tive sliding of the nonchiral walls goes up very weakly with
the increase in the diameter of DWNT soon reaching a pla-
teau. Therefore the frequencies of the relative vibrations of
the walls, as given by Eqs. �8� and �9�, also increase only
slightly with the increase in the DWNT diameter. Using the
results obtained in Ref. 25 the increase in the frequencies is
estimated as 10% if the diameter goes up from 1.5 to 3 nm,
and 20% if the diameter is increased from 1.5 to 10 nm. The
frequencies of the longitudinal and twisting modes however
do not depend on the DWNT diameter,45 and the frequencies
of vibrations of breathing-like modes42 and squeezing-like
modes43 go down. For DWNTs with diameters greater than 3
nm, the frequencies of the relative vibrations of the walls
along the axis and squeezing-like modes may lie in the same
frequency range. When the diameter exceeds 10 nm,

breathing-like modes could also be found in this frequency
region. Thus, high values of the Q factor are achievable in
resonators based on DWNTs only with diameters less than 3
nm.

IV. POSSIBLE APPLICATIONS OF ULTRAHIGH
FREQUENCY RESONATOR

The proposed design of the resonator provides an ideal
platform for experimental study of fundamental physical pro-
cesses in NEMS such as mechanisms of dissipation of ki-
netic energy, the interaction of the nanometer-scale objects,
and the frequencies of their relative vibrations. Since the
direct experimental measurements of the barriers to the rela-
tive motion of the walls are currently not available, the mea-
surements of the frequencies of the vibrations of the walls
would be an excellent experimental test for the quality of the
energy surfaces. The proposed resonator also exhibits prom-
ise as a precise mass sensor.

Mass sensors operate by measuring the frequency shift of
the resonance as additional mass, i.e., a molecule, a molecu-
lar cluster, or a nanoparticle, is adsorbed on the short shuttle
of the proposed resonator. By measuring and comparing the
resonant frequencies of the relative vibrations of the un-
loaded outer wall and the wall with cargo, the added mass of
the nano-object could be determined. Using expression �4�
for the resonant frequency of the oscillating wall, the sensi-
tivities of mass and frequency measurements can be con-
nected as follows:

�M

M
=

2��z

�z
, �11�

where ��z is the line width of the resonant line.
The frequency resolution of nanoresonator is determined

by various fundamental noise processes such as the thermo-
mechanical noise originating from thermally driven motion
of the device,2,63–65 Nyquist-Johnson noise associated with
the readout circuitry,66 adsorption-desorption and
momentum-exchange noises2,65,67 resulting from the interac-
tion with the residual gas molecules, and noise related to the
temperature fluctuations due to a finite thermal conductance
of the resonator.2,65,68 However, the inherent resolution of
nanoresonator is mainly related to the thermomechanical
noise, which, for the measurement bandwidth �f ��z /Q, is
given by the following expression:

��z � �z�kBT

E
� �f

2�Q�z
, �12�

where kB is Boltzmann’s constant, T is the temperature, and
E is the oscillation energy.2 For �f ��z /Q, the upper limit of
the frequency resolution can be estimated as

��z 
�z

Q
� kBT

2�E
. �13�

The measurement bandwidth �f can reach 1 kHz–10 MHz.2

Using expression �11� the upper estimate for the mass sensi-
tivity related to the thermomechanical noise in nanoresona-
tors can be obtained as follows:
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�M 
2M

Q
� kBT

2�E
. �14�

In the proposed model resonator based on the �9,0�@�18,0�
DWNT, the mass of the oscillating �18,0� wall equals to
360mC, thus the mass sensitivity of the resonator can be es-
timated using formula �14� as 0.7mC for 77 K and 0.05mC for
4.2 K. An advantage of the design compared to the cantilever
resonators is that the relation between shifts in the resonant
frequency and changes in the mass depends only on the ge-
ometry of the resonator, and does not depend on the position
of adsorbed particle. A nanomotor driven by a thermal gra-
dient imposed along the device architecture has been pro-
duced in recent experiments of Barreiro,20 in which a nano-
object was attached to a short outer wall of a multiwalled
carbon nanotube that could move along its inner core. The
Barreiro motor could also be used to build a nanoresonator
for the atomic-resolution mass measurements. For the ex-
perimental dimensions of the outer wall reported in Ref. 20
as 300 nm in length and 7 nm diameter, which approximately
correspond to n2�90 for the zigzag DWNT, the sensitivity
of the Barreiro device estimated using Eq. �14� is 20mC for
the quality factor of 160 and 1.4mC for the quality factor of
540.

Sensitivity of the resonator can be improved with de-
crease in the temperature as well as the length and diameter
of the moving outer wall. Figure 4 shows the dependence of
the upper limit of the mass sensitivity on the temperature
calculated for the proposed resonator based on the
�9,0�@�18,0� DWNT with the fixed length of the outer wall
L=2 nm. If the amplitude of oscillations in the proposed
resonator is constant, the oscillation energy E is proportional
to the length L and the diameter D of the moving outer wall.
Therefore, the mass sensitivity has a square-root dependence
on L and D, as seen in Fig. 5. Figure 5 compares the depen-
dencies of the mass sensitivity on L and D for the resonator
based on a �9,0�@�18,0� DWNT with D=1.4 nm and the
Barreiro motor with D=7 nm for two different values of Q
factor, Q=540 and Q=160. We expect the Q factor of the
proposed resonator to be inversely proportional to the tem-
perature, similar to that of the gigahertz oscillator based on a
carbon nanotube.51

Inducing and detecting the relative vibrations of the CNTs
walls with the amplitudes of subnanometer scale at ex-
tremely high resonant frequencies becomes a real challenge.
Tunable narrow-band subterahertz radiation techniques have
been developed very recently69,70 and these could be used for
inducing the relative vibrations of the walls of CNTs. The
detection of tunnel current through the STM tip fixed near
the surface of the vibrating wall may provide a way for ex-
perimental measurements of extremely small amplitudes of
vibrations at very high frequencies. Measurements of the
conductivity between the source and the drain electrode as a
function of the applied frequency of subterahertz radiation
could provide an alternative solution to the detection of the
resonance frequency of CNTs. The conductivity of DWNT
with a short outer wall depends significantly on the position
of the outer wall and hence very sensitive to its
vibrations.13,71

The large resistances of the small structures complicate all
the detection methods that measure charge through small
structures. At high resonance frequencies, such high resis-
tances lead to a frequency-dependent signal attenuation due
to a high RC time constant. There are two methods currently
proposed to work around this problem. One is to transform
the impedance of the measured device at the frequency of
interest.72 Another method is to use a nonlinear component in
the circuit, such as piezoresistor, to perform downmixing at a
much lower frequency, where the signal attenuation is not
large.73,74

V. CONCLUSIONS

This study combines density functional theory and micro-
canonical molecular-dynamics simulations to model a type
of ultrahigh frequency resonator based on the relative vibra-
tions of the walls of carbon nanotubes. For a set of armchair
and zigzag DWNTs, the energy of the interaction of the walls
is computed as a function of their relative displacement and
rotation using LDA-DFT with periodic boundary conditions
and Gaussian-type orbitals. The obtained energy dependen-

FIG. 4. The dependence of the upper limit of mass sensitivity
�M �in mC� of the proposed nanoresonator based on a �9,0�@�18,0�
DWNT on the temperature T �in K�. Triangles indicate the points
for which the MD simulations were performed in this paper.

FIG. 5. The dependence of the upper limit of mass sensitivity
�M �in mC� of the proposed nanoresonator based on a �9,0�@�18,0�
DWNT on the length of the moving outer wall L �in nm�: Q=540,
D=1.4 nm �solid line�; Q=160, D=1.4 nm �dashed line�; Q=540,
D=7 nm �dotted line�; and Q=160, D=7 nm �dash-dotted line�.
Triangles indicate the points for which the MD simulations were
performed in this paper.
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cies are used to predict the frequencies of the small relative
axial and rotational vibrations of the walls. The calculated
frequencies lie in the range of 70–700 GHz. It has been
shown that in the case of fixed long inner wall and moving
short outer wall, the frequencies of their relative vibrations
do not depend on the length of the walls.

The mass of a nano-object attached to the vibrating wall
of the resonator can be determined by measuring the reso-
nance frequency of the system. In the proposed design, the
frequency depends only on the mass of the added nano-
object and does not depend on the size of the resonator or on
the position of the nano-object. To estimate the sensitivity of
mass detection and the quality factor of the resonance, MD
simulations of the model resonator based on a �9,0�@�18,0�
DWNT with the movable outer wall have been performed.
The estimated average values of the Q factor of the model
resonator are Q=160 at 77 K and Q=540 at 4.2 K with the
mass sensitivity less than the mass of a single carbon atom.

Recent advances in techniques allowing determination of
the chirality indices of both walls of an isolated DWNT,49

realization of CNT-based nanomotors with a rotor made of
the short outer sleeve and a stator made of the long inner
core,18–20 and the resonance frequency measurements in
resonators based on the transverse vibrations of CNTs �Refs.
6–8 and 10� give us a cause for the optimism that the pro-
posed nanoresonator will be soon produced using existing
methods of modern nanotechnology.
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