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The possibility of the relative motion of walls
(shells) in multiwall carbon nanotubes (MWNT) [1]
shows good prospects for their use as mobile elements
of nanoelectromechanical systems (NEMS).
Recently, nanomotors with shafts and sleeves repre!
senting different walls of MWNT [2] and a memory
cell switch based on the relative motion of walls along
the MWNT axis [3] were obtained in experiments. A
number of other NEMS based on the relative motion
of walls in MWNT were also proposed, including a
gigahertz oscillator, Brownian nanomotor, and bolt–
nut couples. The operation of NEMS playing the role
of a variable nanoresistor, strain nanosensor, and elec!
tromechanical nanothermometer is based on the
dependence of the conductivity and interwall interac!
tion energy on the relative position of walls. The
schemes and operation principles of these NEMS
were recently reviewed in [4]. Thus, investigations of
the relative motion of walls in MWNT are of consider!
able importance for the creation and development of
NEMS. 

However, now there is a lack of reliable and detailed
experimental data not only on the interaction between
walls of MWNT, but even on the interaction between
graphite layers. For example, both the available exper!
imental values and the results of theoretical calcula!
tions for the interaction of graphite layers exhibit scat!
ter within two orders of magnitude (see, e.g., [5] and
references therein). Only a few experiments were
devoted to measurements of the shear strength of nan!
otubes in the axial direction and only the upper limit
of this value (~0.04 MPa) was estimated [1]. 

As for theoretical investigations, the potential bar!
riers for the relative motion of walls were calculated for

a large number of double!wall carbon nanotubes using
semiempirical potentials [6–8]. For some DWNT, the
calculations were performed using nonempirical (ab
initio) methods [9–13]. Table 1 summarizes the values
of barriers for the relative motion of walls in
(5, 5)@(10, 10) DWNT, which were calculated using
various methods. 

The only available experimental data that can cur!
rently be used to verify the adequacy of ab initio calcu!
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Table 1. Values of potential barriers ∆Uz (for the relative
axial sliding of walls) and ∆U

ϕ
 (for the relative rotation

around the axis) per atom of outer wall in (5, 5)@(10, 10)
DWNT and the ratio γb = ∆U

ϕ
/∆Uz

Ref.
 ∆Uz,

meV/atom
∆U

ϕ
,

meV/atom
γb

[6]a 0.008 0.025 3.13

[8]b 0.00745 0.0144 2.90

[7]c 7.5 8.7 1.16

[11]d 0.128 0.438 3.47

[10]d – 1.2 –

[9]e 0.35 0.78 2.26

[12]f 0.125 0.259 2.08

[13]g 0.138 0.407 2.85

Note: a Lennard!Jones potential in optimized wall structure;
b Lennard!Jones potential in nonoptimized wall structure;
c Crespi–Kolmogorov potential in optimized wall struc!
ture; d tight binding model; e density functional method in
local density approximation (plane wave basis set); f den!
sity functional method in local density approximation
(pdpp!basis set); g density functional method in local den!
sity approximation (dddd!basis set).
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lations and fit the parameters of semiempirical calcu!
lations of the interwall interaction in DWNT are the
structural parameters, energy characteristics, and
elastic properties of graphite. Some semiempirical
[6, 8] and ab initio [12, 13] methods used in the calcu!
lations of barriers for the relative motion of walls in
(5, 5)@(10, 10) DWNT give the values of graphite
characteristics that are in good agreement with exper!
iment. Nevertheless, the published values of these bar!
riers (see Table 1) still show that the results obtained by
various methods differ by orders of magnitude. Thus,
the further development of theoretical methods for the
investigation of the interaction between walls of
MWNT requires experimental determination of the
values of barriers for the relative motion of walls.
Then, a comparison of the experimentally measured
and calculated values of these barriers can be used as
a criterion for the adequacy of calculation methods. 

In this Letter, the results of ab initio calculations of
the barriers are used to evaluate the wall shear strength
of DWNT. The possibility of experimental verification
of the obtained results is discussed. 

According to the results of ab initio calculations for
(5, 5)@(10, 10) DWNT [13] and semiempirical calcu!
lations [8], the energy U of the interaction of commen!
surate nonchiral walls of DWNT ((n1, n1)@(n2, n2) and
(n1, 0)@(n2, 0)) as a function of their relative position
can be interpolated using the first two harmonic terms
of expansion into the Fourier series: 

(1)

where φ is the angle of the relative rotation of walls
about the nanotube axis, z is their relative sliding along
the axis, U0 is the average energy of the interwall inter!
action, and ∆U

φ
 and ∆Uz are the potential barriers for

the relative rotation and sliding of walls, respectively.
For DWNT with commensurate walls, the values of
U0, ∆U

φ
, and ∆Uz are proportional to the length of the

walls’ overlap. In this work U0, ∆Uz, and ∆U
φ
 are calcu!

lated for infinite DWNT and normalized per one atom
of outer wall. The periods of rotation and sliding
between equivalent positions are defined as a δ

φ
 =

πN/n1n2 and δz = lc/2, where N is the greatest common
divisor of n1 and n2 and lc is the nanotube unit cell
length. For DWNT with walls possessing common ele!
ments of rotational symmetry (N = n1), the potential
barrier ∆U

φ
 for the relative rotation can be quite large.

This is illustrated in Table 1 for (5, 5)@(10, 10) DWNT
with common elements of walls’ rotational symmetry
(N = 5). In contrast, for DWNT without common ele!
ments of walls’ rotational symmetry, the dependence
of the interwall interaction energy on φ is very weak
and the second term in expansion (1) can be ignored
(see also review [4]). 

In order to check for the adequacy of expansion (1),
we have calculated ab initio the interwall interaction
energy for (6, 6)@(11, 11) and (9, 0)@(18, 0) DWNT

U φ z,( ) U0
∆U

φ

2
!!!!!!!! 2π

δ
φ

!!!!!φ
 

 cos–
∆Uz

2
!!!!!!!! 2π

δz

!!!!!z
 

  ,cos–=

at a fixed rotation angle φ and five values of the relative
axial displacement z, including the global extrema and
saddle points. The calculations were performed using
the density functional method in the local density
approximation as implemented in AIMPRO software
[14]. This approach evaluates the energy of interaction
between graphite layers at 35 meV/atom [15] (in
agreement with the experimental value of 35 ±
10 meV/atom [5]) and reproduces the elastic and elec!
tronic properties of graphite sensitive to the interlayer
interaction. The Brillouin zone was described using
18 and 15 k!points in the principal axis direction for
the (6, 6)@(11, 11) and (9, 0)@(18, 0) DWNT, respec!
tively. Details of the calculation procedure are
described elsewhere [13]. 

Figures 1a and 1b present the calculated depen!
dences of the interwall interaction energy on the rela!
tive displacement of walls along the nanotube axis for
(6, 6)@(11, 11) and (9, 0)@(18, 0) DWNT, respec!
tively. These plots are well interpolated by cosine
functions, thus demonstrating the adequacy of
expansion (1). Therefore, we can use this expansion
for calculating the characteristics of a series of
(n1, n1)@(n2, n2) and (n1, 0)@(n2, 0) DWNT. Using the
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Fig. 1. Plots of the interwall interaction energy U (mea!
sured from the minimum) versus relative axial displace!
ment of walls z (expressed in units of the sliding period δz)
for (a) (6, 6)@(11, 11) and (b) (9, 0)@(18, 0) DWNT. The
points present the results of ab initio calculations, solid
curves show the interpolation by cosine functions. 
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aforementioned interpolation, we estimated the
potential barriers for the relative sliding of walls along
the nanotube axis as ∆Uz = 0.19 ± 0.01 meV/atom
for (6, 6)@(11, 11) DWNT and ∆Uz = 1.71 ±

0.04 meV/atom for (9, 0)@(18, 0) DWNT. For the
other DWNT, the energy parameters (U0, ∆Uz, and
∆U

φ
) and structural data for subsequent calculations

were taken from [13]. 
The force of interaction between DWNT walls can

be separated into two components, including a capil!
lary force (Fc), which arises during a telescopic protru!
sion of the inner wall (and tends to pull this wall back),
and a static friction force related to a particular relief
of the U(φ, z) potential surface. The average value of
the capillary force is given by the following expression: 

(2)

where Lov is the walls’ overlap length and 4n2 is the
number of atoms per unit cell in the outer wall. The
values of Fc calculated for various DWNT are pre!
sented in Table 2. 

The maximum values of the static friction force Fz
and F

φ
 for the relative sliding and rotation of walls,

respectively, are determined using expansion (1).
These values are defined as follows [13]: 

(3)

where Rm is the radius of the moving wall. 
The shear strengths of DWNT for the relative slid!

ing of walls along the nanotube axis and for their rela!
tive rotation about this axis are defined as follows: 

(4)

where 

(5)
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is the walls’ overlap area and R1 and R2 are the radii of
the inner and outer walls, respectively. The values of
shear strengths calculated for various DWNT are pre!
sented in Table 2. 

Now let us discuss the possibility of experimental
verification of the above results. By now, the upper
boundary of the shear strength for the relative axial
sliding of nanotube walls was evaluated by atomic
force microscopy (AFM) as Mz < 0.04 MPa [1]. In
most MWNT with both commensurate and incom!
mensurate chiral walls, the barriers for the relative
axial sliding of adjacent walls (and hence the corre!
sponding shear strengths) are negligibly small (see,
e.g., review [4]). Only the DWNT with nonchiral
commensurate walls considered in this study possess
significant barriers for the relative sliding of adjacent
layers [4, 7, 8, 13]. In the experiment [1], the shear
strength was determined only for one pair of adjacent
walls in an MWNT. Moreover, this was a pair that pos!
sesses the smallest value of this shear strength as com!
pared to the other pairs. Unfortunately, the chirality
indices of interacting walls in MWNT studied in [1]
were not determined. 

Thus, we believe that the available experimental
estimate of the upper boundary of shear strengths for
the relative axial sliding of walls refers to the incom!
mensurate or commensurate chiral walls. The values
of shear strengths obtained in our calculations are sev!
eral orders of magnitude greater than the upper
boundary (0.04 MPa) provided by the AFM for the
relative sliding of adjacent walls with undetermined
chirality indices. The chirality indices of both layers in
DWNT can be determined with the aid of electron dif!
fractometry [16]. Therefore, the capillary forces and
shear strengths calculated in this study can be simulta!
neously determined by AFM measurements of the
interwall interaction force as a function of the length
of telescopic protrusion of the inner wall in DWNT
with preliminarily determined chirality indices. These
measurements are necessary both for progress in cal!
culations of the interwall interactions in MWNT and
for the development of NEMS based on these interac!
tions. 
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